The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sparse coding(19hit)

1-19hit
  • Device-Free Localization via Sparse Coding with a Generalized Thresholding Algorithm

    Qin CHENG  Linghua ZHANG  Bo XUE  Feng SHU  Yang YU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/08/05
      Vol:
    E105-B No:1
      Page(s):
    58-66

    As an emerging technology, device-free localization (DFL) using wireless sensor networks to detect targets not carrying any electronic devices, has spawned extensive applications, such as security safeguards and smart homes or hospitals. Previous studies formulate DFL as a classification problem, but there are still some challenges in terms of accuracy and robustness. In this paper, we exploit a generalized thresholding algorithm with parameter p as a penalty function to solve inverse problems with sparsity constraints for DFL. The function applies less bias to the large coefficients and penalizes small coefficients by reducing the value of p. By taking the distinctive capability of the p thresholding function to measure sparsity, the proposed approach can achieve accurate and robust localization performance in challenging environments. Extensive experiments show that the algorithm outperforms current alternatives.

  • L0 Norm Optimization in Scrambled Sparse Representation Domain and Its Application to EtC System

    Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1589-1598

    In this paper, we propose L0 norm optimization in a scrambled sparse representation domain and its application to an Encryption-then-Compression (EtC) system. We design a random unitary transform that conserves L0 norm isometry. The resulting encryption method provides a practical orthogonal matching pursuit (OMP) algorithm that allows computation in the encrypted domain. We prove that the proposed method theoretically has exactly the same estimation performance as the nonencrypted variant of the OMP algorithm. In addition, we demonstrate the security strength of the proposed secure sparse representation when applied to the EtC system. Even if the dictionary information is leaked, the proposed scheme protects the privacy information of observed signals.

  • Secure OMP Computation Maintaining Sparse Representations and Its Application to EtC Systems

    Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/06/22
      Vol:
    E103-D No:9
      Page(s):
    1988-1997

    In this paper, we propose a secure computation of sparse coding and its application to Encryption-then-Compression (EtC) systems. The proposed scheme introduces secure sparse coding that allows computation of an Orthogonal Matching Pursuit (OMP) algorithm in an encrypted domain. We prove theoretically that the proposed method estimates exactly the same sparse representations that the OMP algorithm for non-encrypted computation does. This means that there is no degradation of the sparse representation performance. Furthermore, the proposed method can control the sparsity without decoding the encrypted signals. Next, we propose an EtC system based on the secure sparse coding. The proposed secure EtC system can protect the private information of the original image contents while performing image compression. It provides the same rate-distortion performance as that of sparse coding without encryption, as demonstrated on both synthetic data and natural images.

  • Side Scan Sonar Image Super Resolution via Region-Selective Sparse Coding

    Jaihyun PARK  Bonhwa KU  Youngsaeng JIN  Hanseok KO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    210-213

    Side scan sonar using low frequency can quickly search a wide range, but the images acquired are of low quality. The image super resolution (SR) method can mitigate this problem. The SR method typically uses sparse coding, but accurately estimating sparse coefficients incurs substantial computational costs. To reduce processing time, we propose a region-selective sparse coding based SR system that emphasizes object regions. In particular, the region that contains interesting objects is detected for side scan sonar based underwater images so that the subsequent sparse coding based SR process can be selectively applied. Effectiveness of the proposed method is verified by the reduced processing time required for image reconstruction yet preserving the same level of visual quality as conventional methods.

  • Action Recognition Using Low-Rank Sparse Representation

    Shilei CHENG  Song GU  Maoquan YE  Mei XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/24
      Vol:
    E101-D No:3
      Page(s):
    830-834

    Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.

  • Online Convolutive Non-Negative Bases Learning for Speech Enhancement

    Yinan LI  Xiongwei ZHANG  Meng SUN  Yonggang HU  Li LI  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:8
      Page(s):
    1609-1613

    An online version of convolutive non-negative sparse coding (CNSC) with the generalized Kullback-Leibler (K-L) divergence is proposed to adaptively learn spectral-temporal bases from speech streams. The proposed scheme processes training data piece-by-piece and incrementally updates learned bases with accumulated statistics to overcome the inefficiency of its offline counterpart in processing large scale or streaming data. Compared to conventional non-negative sparse coding, we utilize the convolutive model within bases, so that each basis is capable of describing a relatively long temporal span of signals, which helps to improve the representation power of the model. Moreover, by incorporating a voice activity detector (VAD), we propose an unsupervised enhancement algorithm that updates the noise dictionary adaptively from non-speech intervals. Meanwhile, for the speech intervals, one can adaptively learn the speech bases by keeping the noise ones fixed. Experimental results show that the proposed algorithm outperforms the competing algorithms substantially, especially when the background noise is highly non-stationary.

  • Efficient Local Feature Encoding for Human Action Recognition with Approximate Sparse Coding

    Yu WANG  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/06
      Vol:
    E99-D No:4
      Page(s):
    1212-1220

    Local spatio-temporal features are popular in the human action recognition task. In practice, they are usually coupled with a feature encoding approach, which helps to obtain the video-level vector representations that can be used in learning and recognition. In this paper, we present an efficient local feature encoding approach, which is called Approximate Sparse Coding (ASC). ASC computes the sparse codes for a large collection of prototype local feature descriptors in the off-line learning phase using Sparse Coding (SC) and look up the nearest prototype's precomputed sparse code for each to-be-encoded local feature in the encoding phase using Approximate Nearest Neighbour (ANN) search. It shares the low dimensionality of SC and the high speed of ANN, which are both desired properties for a local feature encoding approach. ASC has been excessively evaluated on the KTH dataset and the HMDB51 dataset. We confirmed that it is able to encode large quantity of local video features into discriminative low dimensional representations efficiently.

  • Integrating Multiple Global and Local Features by Product Sparse Coding for Image Retrieval

    Li TIAN  Qi JIA  Sei-ichiro KAMATA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/12/21
      Vol:
    E99-D No:3
      Page(s):
    731-738

    In this study, we propose a simple, yet general and powerful framework of integrating multiple global and local features by Product Sparse Coding (PSC) for image retrieval. In our framework, multiple global and local features are extracted from images and then are transformed to Trimmed-Root (TR)-features. After that, the features are encoded into compact codes by PSC. Finally, a two-stage ranking strategy is proposed for indexing in retrieval. We make three major contributions in this study. First, we propose TR representation of multiple image features and show that the TR representation offers better performance than the original features. Second, the integrated features by PSC is very compact and effective with lower complexity than by the standard sparse coding. Finally, the two-stage ranking strategy can balance the efficiency and memory usage in storage. Experiments demonstrate that our compact image representation is superior to the state-of-the-art alternatives for large-scale image retrieval.

  • Compact Sparse Coding for Ground-Based Cloud Classification

    Shuang LIU  Zhong ZHANG  Xiaozhong CAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/08/17
      Vol:
    E98-D No:11
      Page(s):
    2003-2007

    Although sparse coding has emerged as an extremely powerful tool for texture and image classification, it neglects the relationship of coding coefficients from the same class in the training stage, which may cause a decline in the classification performance. In this paper, we propose a novel coding strategy named compact sparse coding for ground-based cloud classification. We add a constraint on coding coefficients into the objective function of traditional sparse coding. In this way, coding coefficients from the same class can be forced to their mean vector, making them more compact and discriminative. Experiments demonstrate that our method achieves better performance than the state-of-the-art methods.

  • Statistics on Temporal Changes of Sparse Coding Coefficients in Spatial Pyramids for Human Action Recognition

    Yang LI  Junyong YE  Tongqing WANG  Shijian HUANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/06/01
      Vol:
    E98-D No:9
      Page(s):
    1711-1714

    Traditional sparse representation-based methods for human action recognition usually pool over the entire video to form the final feature representation, neglecting any spatio-temporal information of features. To employ spatio-temporal information, we present a novel histogram representation obtained by statistics on temporal changes of sparse coding coefficients frame by frame in the spatial pyramids constructed from videos. The histograms are further fed into a support vector machine with a spatial pyramid matching kernel for final action classification. We validate our method on two benchmarks, KTH and UCF Sports, and experiment results show the effectiveness of our method in human action recognition.

  • Speech Emotion Recognition Based on Sparse Transfer Learning Method

    Peng SONG  Wenming ZHENG  Ruiyu LIANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/04/10
      Vol:
    E98-D No:7
      Page(s):
    1409-1412

    In traditional speech emotion recognition systems, when the training and testing utterances are obtained from different corpora, the recognition rates will decrease dramatically. To tackle this problem, in this letter, inspired from the recent developments of sparse coding and transfer learning, a novel sparse transfer learning method is presented for speech emotion recognition. Firstly, a sparse coding algorithm is employed to learn a robust sparse representation of emotional features. Then, a novel sparse transfer learning approach is presented, where the distance between the feature distributions of source and target datasets is considered and used to regularize the objective function of sparse coding. The experimental results demonstrate that, compared with the automatic recognition approach, the proposed method achieves promising improvements on recognition rates and significantly outperforms the classic dimension reduction based transfer learning approach.

  • Application of Content Specific Dictionaries in Still Image Coding

    Jigisha N PATEL  Jerin JOSE  Suprava PATNAIK  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2014/11/10
      Vol:
    E98-D No:2
      Page(s):
    394-403

    The concept of sparse representation is gaining momentum in image processing applications, especially in image compression, from last one decade. Sparse coding algorithms represent signals as a sparse linear combination of atoms of an overcomplete dictionary. Earlier works shows that sparse coding of images using learned dictionaries outperforms the JPEG standard for image compression. The conventional method of image compression based on sparse coding, though successful, does not adapting the compression rate based on the image local block characteristics. Here, we have proposed a new framework in which the image is classified into three classes by measuring the block activities followed by sparse coding each of the classes using dictionaries learned specific to each class. K-SVD algorithm has been used for dictionary learning. The sparse coefficients for each class are Huffman encoded and combined to form a single bit stream. The model imparts some rate-distortion attributes to compression as there is provision for setting a different constraint for each class depending on its characteristics. We analyse and compare this model with the conventional model. The outcomes are encouraging and the model makes way for an efficient sparse representation based image compression.

  • Combining LBP and SIFT in Sparse Coding for Categorizing Scene Images

    Shuang BAI  Jianjun HOU  Noboru OHNISHI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:9
      Page(s):
    2563-2566

    Local descriptors, Local Binary Pattern (LBP) and Scale Invariant Feature Transform (SIFT) are widely used in various computer applications. They emphasize different aspects of image contents. In this letter, we propose to combine them in sparse coding for categorizing scene images. First, we regularly extract LBP and SIFT features from training images. Then, corresponding to each feature, a visual word codebook is constructed. The obtained LBP and SIFT codebooks are used to create a two-dimensional table, in which each entry corresponds to an LBP visual word and a SIFT visual word. Given an input image, LBP and SIFT features extracted from the same positions of this image are encoded together based on sparse coding. After that, spatial max pooling is adopted to determine the image representation. Obtained image representations are converted into one-dimensional features and classified by utilizing SVM classifiers. Finally, we conduct extensive experiments on datasets of Scene Categories 8 and MIT 67 Indoor Scene to evaluate the proposed method. Obtained results demonstrate that combining features in the proposed manner is effective for scene categorization.

  • Exemplar-Based Voice Conversion Using Sparse Representation in Noisy Environments

    Ryoichi TAKASHIMA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1946-1953

    This paper presents a voice conversion (VC) technique for noisy environments, where parallel exemplars are introduced to encode the source speech signal and synthesize the target speech signal. The parallel exemplars (dictionary) consist of the source exemplars and target exemplars, having the same texts uttered by the source and target speakers. The input source signal is decomposed into the source exemplars, noise exemplars and their weights (activities). Then, by using the weights of the source exemplars, the converted signal is constructed from the target exemplars. We carried out speaker conversion tasks using clean speech data and noise-added speech data. The effectiveness of this method was confirmed by comparing its effectiveness with that of a conventional Gaussian Mixture Model (GMM)-based method.

  • Sparsely Encoded Hopfield Model with Unit Replacement

    Ryota MIYATA  Koji KURATA  Toru AONISHI  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2124-2132

    We investigate a sparsely encoded Hopfield model with unit replacement by using a statistical mechanical method called self-consistent signal-to-noise analysis. We theoretically obtain a relation between the storage capacity and the number of replacement units for each sparseness a. Moreover, we compare the unit replacement model with the forgetting model in terms of the network storage capacity. The results show that the unit replacement model has a finite value of the optimal sparseness on an open interval 0 (1/2 coding) < a < 1 (the limit of sparseness) to maximize the storage capacity for a large number of replacement units, although the forgetting model does not.

  • Dictionary-Based Map Compression for Sparse Feature Maps

    Kanji TANAKA  Tomomi NAGASAKA  

     
    PAPER-Pattern Recognition

      Vol:
    E95-D No:2
      Page(s):
    604-613

    Obtaining a compact representation of a large-size feature map built by mapper robots is a critical issue in recent mobile robotics. This “map compression” problem is explored from a novel perspective of dictionary-based data compression techniques in the paper. The primary contribution of the paper is the proposal of the dictionary-based map compression approach. A map compression system is presented by employing RANSAC map matching and sparse coding as building blocks. The effectiveness levels of the proposed techniques is investigated in terms of map compression ratio, compression speed, the retrieval performance of compressed/decompressed maps, as well as applications to the Kolmogorov complexity.

  • Exploration into Single Image Super-Resolution via Self Similarity by Sparse Representation

    Lv GUO  Yin LI  Jie YANG  Li LU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3144-3148

    A novel method for single image super resolution without any training samples is presented in the paper. By sparse representation, the method attempts to recover at each pixel its best possible resolution increase based on the self similarity of the image patches across different scale and rotation transforms. The experiments indicate that the proposed method can produce robust and competitive results.

  • Shift-Invariant Sparse Image Representations Using Tree-Structured Dictionaries

    Makoto NAKASHIZUKA  Hidenari NISHIURA  Youji IIGUNI  

     
    PAPER-Image Processing

      Vol:
    E92-A No:11
      Page(s):
    2809-2818

    In this study, we introduce shift-invariant sparse image representations using tree-structured dictionaries. Sparse coding is a generative signal model that approximates signals by the linear combinations of atoms in a dictionary. Since a sparsity penalty is introduced during signal approximation and dictionary learning, the dictionary represents the primal structures of the signals. Under the shift-invariance constraint, the dictionary comprises translated structuring elements (SEs). The computational cost and number of atoms in the dictionary increase along with the increasing number of SEs. In this paper, we propose an algorithm for shift-invariant sparse image representation, in which SEs are learnt with a tree-structured approach. By using a tree-structured dictionary, we can reduce the computational cost of the image decomposition to the logarithmic order of the number of SEs. We also present the results of our experiments on the SE learning and the use of our algorithm in image recovery applications.

  • Sparsely Encoded Associative Memory Model with Forgetting Process

    Tomoyuki KIMOTO  Masato OKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E85-D No:12
      Page(s):
    1938-1945

    In this paper, an associative memory model with a forgetting process proposed by Mezard et al. is investigated as a means of storing sparsely encoded patterns by the SCSNA proposed by Shiino and Fukai. Similar to the case of storing non-sparse (non-biased) patterns as analyzed by Mezard et al., this sparsely encoded associative memory model is also free from a catastrophic deterioration of the memory caused by memory pattern overloading. We theoretically obtain a relationship between the storage capacity and the forgetting rate, and find that there is an optimal forgetting rate leading to the maximum storage capacity. We call this the optimal storage capacity rate. As the memory pattern firing rate decreases, the optimal storage capacity increases and the optimal forgetting rate decreases. Furthermore, we shown that the capacity rate (i.e. the ratio of the storage capacity for the conventional correlation learning rule to the optimal storage capacity) is almost constant with respect to the memory pattern firing rate.