The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] spreading sequence(31hit)

21-31hit(31hit)

  • Proposal of Switching Speed Reduction Method Using Chaotic Spreading Sequence in Direct Optical Switching CDMA Radio-on-Fiber Network and Its Experimental Investigation

    Takeshi HIGASHINO  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Communication Systems

      Vol:
    E88-C No:7
      Page(s):
    1475-1482

    The direct optical switching CDMA radio-on-fiber network is proposed as multiplexing method for radio base stations in microcell/picocell technologies. In this system, aliasing distortions degrade the received signal quality and decreases the number of connectable radio base stations (RBSs) when the encoding rate becomes lower than the twice of bandwidth of RF signal. This paper proposes the optical switching speed reduction method and clarifies that the chaotic spreading sequences can suppress the aliasing distortion without additional processing at the receiver even if the encoding rate becomes lower than the RF signal bandwidth. The effect in switching speed reduction is theoretically investigated and the effect in aliasing distortions suppression is experimentally investigated by using the proposed method.

  • Subspace-Based Interference Suppression Technique for Long-Code Downlink CDMA Adaptive Receiver

    Samphan PHROMPICHAI  Peerapol YUVAPOOSITANON  Phaophak SIRISUK  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    676-684

    This paper presents a multiple constrained subspace based multiuser detector for synchronous long-code downlink multirate DS-CDMA systems. The novel receiver adapts its fractionally-spaced equaliser tap-weights based upon two modes, namely training and decision-directed modes. Switching between two modes is achieved by changing the code constraint in the associated subspace algorithm. Moreover, detection of the desired user requires the knowledge of the desired user's spreading code only. Simulation results show that the proposed receiver is capable of multiple access interference (MAI) suppression and multipath mitigation. Besides, the results reveal the improvement in terms of convergence speed and mean square error (MSE) of the proposed receiver over the existing receiver in both static and dynamic environments.

  • Crest Factor Reduction for Complex Multi-Carrier Signal Processing

    Young-Hwan YOU  Min-Goo KANG  Han-Jong KIM  Pan-Yuh JOO  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:1
      Page(s):
    378-380

    One of the main disadvantage of multi-carrier CDMA (MC-CDMA) signals is the high peak power of the transmitted signals which limits their applications. To account for this issue, we provide a simple signal processing for reducing the high crest factor (CF) of MC-CDMA signals. Using this modified MC-CDMA signal, the high CF due to Walsh spreading sequences can be mitigated without explicit side information and degradation in the detection performance.

  • Inter-Code Interference and Optimum Spreading Sequence in Frequency-Selective Rayleigh Fading Channels on Uplink MC-CDMA

    Takashi SHONO  Tomoyuki YAMADA  Kiyoshi KOBAYASHI  Katsuhiko ARAKI  Iwao SASASE  

     
    PAPER-Signal Processing for Communications

      Vol:
    E87-A No:8
      Page(s):
    1981-1993

    In uplink multicarrier code division multiple access (MC-CDMA), the inter-code interference (ICI) caused by the independent and frequency-selective fading channel of each user and the inter-carrier interference caused by the asynchronous reception of each user's OFDM symbols result in multiple access interference (MAI). This paper evaluates the ICI in frequency-selective Rayleigh fading channels for uplink MC-CDMA. We derive theoretical expressions for the desired-to-undesired signal power ratio (DUR) as a quantitative representation of ICI, and validate them by comparison with computer simulations using a Walsh-Hadamard (WH) code. Based on the analytical results, we obtain the optimum spreading sequence that minimizes the ICI (in short, maximizes the multiplexing performance); this sequence appears to be orthogonal. Three equalization combining methods are examined; equal gain combining (EGC), orthogonality restoring combining (ORC), and maximum ratio combining (MRC).

  • Performance Analysis of Forward Link DS-CDMA Systems Using Random and Orthogonal Spreading Sequences

    Ji-Woong CHOI  Yong-Hwan LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:8
      Page(s):
    2195-2202

    The characteristics of the spreading sequence significantly affect the signal-to-interference power ratio (SIR) of the received signal in direct sequence code division multiple access (DS-CDMA) system. In this paper, we analyze the receiver performance of the forward link of a DS-CDMA system in terms of the SIR and bit error rate (BER) when pseudo noise (PN) codes and concatenated orthogonal/PN (OPN) codes are used as the spreading sequence. The use of OPN spreading codes can cancel out the intra-cell interference signals with equal path delay, but the use of PN spreading codes cannot, significantly degrading the performance. As a result, the BER performance of the OPN spreading system is better than that of the PN spreading system. The use of OPN spreading sequences can provide the system capacity at least two times larger than the use of PN spreading sequences in the single-cell environment even when the channel has a large number of multipaths. The two spreading systems also show significant difference in the user capacity even in a multi-cell environment.

  • Performance Evaluation for a New Quasi-Synchronous CDMA System Employing Generalized Orthogonal Sequences

    Li HAO  Pingzhi FAN  

     
    PAPER-Networking and Architectures

      Vol:
    E86-D No:9
      Page(s):
    1513-1524

    In this paper, a quasi-synchronous code-division multiple-access (QS-CDMA) is investigated for application in the reverse link of a microcellular or indoor mobile communication environment. In a QS-CDMA system, the relative time delay between the signals of different users is normally restricted within a few chips. Generalized orthogonal (GO) codes added with guard chips are employed as the spreading sequences in this paper and the strict timing error restrictions for BPSK and M-QAM modulation schemes are derived based on the correlation properties of GO code set which determines the multiple access interference (MAI). The results reveal that the system employing GO code set with bigger GO zone can tolerate more serious timing error, and higher order modulation schemes require stricter synchronization. Based on the system model presented, the BER performance for BPSK and M-QAM is evaluated by Gaussian Approximation (GA) and Monte Carlo simulation. The system capacity in terms of acquirable total bit rates are also evaluated, revealing that if system synchronization error is limited within the GO zone, M-QAM scheme can be utilized to improve the system capacity.

  • A New Method for Constructing Modulatable Complete Complementary Codes

    Hideyuki TORII  Makoto NAKAMURA  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:9
      Page(s):
    2388-2395

    Complete complementary codes have the property that the sum of correlation functions of several sequences satisfies both ideal autocorrelation and cross-correlation values. Modulatable complete complementary codes (MCC codes), which is a type of periodic complete complementary codes, are suitable for spreading sequences of M-ary CDMA systems. In the present paper, we propose a new method for constructing MCC codes. Using this method, we can easily generate various MCC codes.

  • Autocorrelation Properties of Unified Complex Hadamard Transform Sequences

    Wee SER  Susanto RAHARDJA  Zinan LIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:10
      Page(s):
    2280-2282

    The UCHT (Unified Complex Hadamard Transform) has been proposed as a new family of spreading sequences for DS-SSMA systems recently. In this Letter, the periodic autocorrelation (PAC) properties of the Unified Complex Hadamard Transform (UCHT) sequences are analyzed. Upper bounds for the out-of-phase PAC are derived for two groups of the UCHT sequences, namely the HSP-UCHT and the NHSP-UCHT sequences (the later is a more general representation of the well-known Walsh-Hadamard (WH) sequences). A comparison of the two bounds is performed. It turns out that the HSP-UCHT sequences have a lower upper bound for the out-of-phase PAC. This makes the HSP-UCHT sequences more effective than the WH sequences in combating multipath effect for DS-SSMA systems.

  • New Maximal-Period Sequences Using Extended Nonlinear Feedback Shift Registers Based on Chaotic Maps

    Akio TSUNEDA  Yasunori KUGA  Takahiro INOUE  

     
    LETTER

      Vol:
    E85-A No:6
      Page(s):
    1327-1332

    Nonlinear feedback shift registers (NFSRs), which can generate maximal-period sequences called de Bruijn sequences, are regarded as one-dimensional maps with finite bits by observing states of the registers at each time. Such one-dimensional maps are similar to the Bernoulli map which is a famous chaotic map. This implies that an NFSR is one of finite-word-length approximations to the Bernoulli map. Inversely, constructing such one-dimensional maps with finite bits based on other chaotic maps, we can design new types of NFSRs, called extended NFSRs, which can generate new maximal-period sequences. We design such extended NFSRs based on some well-known chaotic maps, which gives a new concept in sequence design. Some properties of maximal-period sequences generated by such NFSRs are investigated and discussed.

  • A Theoretical Analysis of the Synchronous SS-CSC/CDMA System

    Kouji OHUCHI  Hiromasa HABUCHI  Toshio TAKEBAYASHI  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2291-2297

    In this paper, the bit error rate (BER) performance of the Spread Spectrum communication with Constrained Spreading Code system is studied under the synchronous CDMA system. Particularly, BER considering the tracking error is derived by theoretical analysis. The synchronizing spreading sequence is employed to track the signals in the receiver. As the result, the BER performance is degraded by increasing the number of users. However, the BER performance can be improved by canceling the co-channel interference and by suppressing the cross-correlation value between the information spreading sequence and the synchronizing spreading sequence.

  • Modified Antisymmetric M Sequence and Its Periodic Correlation Property

    Shinji TSUZUKI  Susumu YOSHIDA  Saburo TAZAKI  Yoshio YAMADA  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2180-2191

    In this paper we discuss the binary spreading sequences whose spectral distributions are DC free and spectral distribution's shapes can be easily controlled by a certain parameter denoted by δ. The newly developed sequences, referred to as modified antisymmetric M-sequences, are modified-versions of the conventional antisymmetric (AS)M-sequences. The proposed sequences are designed to increase the varieties of spectral distribution's shapes and improve the correlation properties when compared to those of the FM coded M-sequences which have already proposed by Tsuzuki et al. Some typical line coded M-sequences, i.e. the (differential) Manchester coded M-sequences and the FM coded M-sequences, and the conventional AS M-sequences are included in the set of proposed sequences. The improvement of the average BER (bit error rate) performance for asynchronous DS/SSMA (direct sequence/spread spectrum multiple access) systems using the proposed sequences in comparison to the system using the conventional AO/LSE (auto-optimal phase with least sidelobe energy) M-sequences is also shown.

21-31hit(31hit)