The search functionality is under construction.

Keyword Search Result

[Keyword] support vector machines(25hit)

1-20hit(25hit)

  • Weber Centralized Binary Fusion Descriptor for Fingerprint Liveness Detection

    Asera WAYNE ASERA  Masayoshi ARITSUGI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1422-1425

    In this research, we propose a novel method to determine fingerprint liveness to improve the discriminative behavior and classification accuracy of the combined features. This approach detects if a fingerprint is from a live or fake source. In this approach, fingerprint images are analyzed in the differential excitation (DE) component and the centralized binary pattern (CBP) component, which yield the DE image and CBP image, respectively. The images obtained are used to generate a two-dimensional histogram that is subsequently used as a feature vector. To decide if a fingerprint image is from a live or fake source, the feature vector is processed using support vector machine (SVM) classifiers. To evaluate the performance of the proposed method and compare it to existing approaches, we conducted experiments using the datasets from the 2011 and 2015 Liveness Detection Competition (LivDet), collected from four sensors. The results show that the proposed method gave comparable or even better results and further prove that methods derived from combination of features provide a better performance than existing methods.

  • Learning Subspace Classification Using Subset Approximated Kernel Principal Component Analysis

    Yoshikazu WASHIZAWA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/25
      Vol:
    E99-D No:5
      Page(s):
    1353-1363

    We propose a kernel-based quadratic classification method based on kernel principal component analysis (KPCA). Subspace methods have been widely used for multiclass classification problems, and they have been extended by the kernel trick. However, there are large computational complexities for the subspace methods that use the kernel trick because the problems are defined in the space spanned by all of the training samples. To reduce the computational complexity of the subspace methods for multiclass classification problems, we extend Oja's averaged learning subspace method and apply a subset approximation of KPCA. We also propose an efficient method for selecting the basis vectors for this. Due to these extensions, for many problems, our classification method exhibits a higher classification accuracy with fewer basis vectors than does the support vector machine (SVM) or conventional subspace methods.

  • Mean Polynomial Kernel and Its Application to Vector Sequence Recognition

    Raissa RELATOR  Yoshihiro HIROHASHI  Eisuke ITO  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:7
      Page(s):
    1855-1863

    Classification tasks in computer vision and brain-computer interface research have presented several applications such as biometrics and cognitive training. However, like in any other discipline, determining suitable representation of data has been challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data are approximated by linear subspaces, in particular, methods that were formulated on Grassmann manifolds. This kernel takes a more general approach given that it can also support input data that can be modeled as a vector sequence, and not necessarily requiring it to be a linear subspace. We discuss how the kernel can be associated with the Projection kernel, a Grassmann kernel. Experimental results using face image sequences and physiological signal data show that the mean polynomial kernel surpasses existing subspace-based methods on Grassmann manifolds in terms of predictive performance and efficiency.

  • Training Multiple Support Vector Machines for Personalized Web Content Filters

    Dung Duc NGUYEN  Maike ERDMANN  Tomoya TAKEYOSHI  Gen HATTORI  Kazunori MATSUMOTO  Chihiro ONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:11
      Page(s):
    2376-2384

    The abundance of information published on the Internet makes filtering of hazardous Web pages a difficult yet important task. Supervised learning methods such as Support Vector Machines (SVMs) can be used to identify hazardous Web content. However, scalability is a big challenge, especially if we have to train multiple classifiers, since different policies exist on what kind of information is hazardous. We therefore propose two different strategies to train multiple SVMs for personalized Web content filters. The first strategy identifies common data clusters and then performs optimization on these clusters in order to obtain good initial solutions for individual problems. This initialization shortens the path to the optimal solutions and reduces the training time on individual training sets. The second approach is to train all SVMs simultaneously. We introduce an SMO-based kernel-biased heuristic that balances the reduction rate of individual objective functions and the computational cost of kernel matrix. The heuristic primarily relies on the optimality conditions of all optimization problems and secondly on the pre-calculated part of the whole kernel matrix. This strategy increases the amount of information sharing among learning tasks, thus reduces the number of kernel calculation and training time. In our experiments on inconsistently labeled training examples, both strategies were able to predict hazardous Web pages accurately (> 91%) with a training time of only 26% and 18% compared to that of the normal sequential training.

  • Utilizing Multiple Data Sources for Localization in Wireless Sensor Networks Based on Support Vector Machines

    Prakit JAROENKITTICHAI  Ekachai LEELARASMEE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E96-A No:11
      Page(s):
    2081-2088

    Localization in wireless sensor networks is the problem of estimating the geographical locations of wireless sensor nodes. We propose a framework to utilizing multiple data sources for localization scheme based on support vector machines. The framework can be used with both classification and regression formulation of support vector machines. The proposed method uses only connectivity information. Multiple hop count data sources can be generated by adjusting the transmission power of sensor nodes to change the communication ranges. The optimal choice of communication ranges can be determined by evaluating mutual information. We consider two methods for integrating multiple data sources together; unif method and align method. The improved localization accuracy of the proposed framework is verified by simulation study.

  • A Time-Varying Adaptive IIR Filter for Robust Text-Independent Speaker Verification

    Santi NURATCH  Panuthat BOONPRAMUK  Chai WUTIWIWATCHAI  

     
    PAPER-Speech and Hearing

      Vol:
    E96-D No:3
      Page(s):
    699-707

    This paper presents a new technique to smooth speech feature vectors for text-independent speaker verification using an adaptive band-pass IIR filer. The filter is designed by considering the probability density of modulation-frequency components of an M-dimensional feature vector. Each dimension of the feature vector is processed and filtered separately. Initial filter parameters, low-cut-off and high-cut-off frequencies, are first determined by the global mean of the probability densities computed from all feature vectors of a given speech utterance. Then, the cut-off frequencies are adapted over time, i.e. every frame vector, in both low-frequency and high-frequency bands based also on the global mean and the standard deviation of feature vectors. The filtered feature vectors are used in a SVM-GMM Supervector speaker verification system. The NIST Speaker Recognition Evaluation 2006 (SRE06) core-test is used in evaluation. Experimental results show that the proposed technique clearly outperforms a baseline system using a conventional RelAtive SpecTrA (RASTA) filter.

  • Autonomous Throughput Improvement Scheme Using Machine Learning Algorithms for Heterogeneous Wireless Networks Aggregation

    Yohsuke KON  Kazuki HASHIGUCHI  Masato ITO  Mikio HASEGAWA  Kentaro ISHIZU  Homare MURAKAMI  Hiroshi HARADA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1143-1151

    It is important to optimize aggregation schemes for heterogeneous wireless networks for maximizing communication throughput utilizing any available radio access networks. In the heterogeneous networks, differences of the quality of service (QoS), such as throughput, delay and packet loss rate, of the networks makes difficult to maximize the aggregation throughput. In this paper, we firstly analyze influences of such differences in QoS to the aggregation throughput, and show that it is possible to improve the throughput by adjusting the parameters of an aggregation system. Since manual parameter optimization is difficult and takes much time, we propose an autonomous parameter tuning scheme using a machine learning algorithm for the heterogeneous wireless network aggregation. We implement the proposed scheme on a heterogeneous cognitive radio network system. The results on our experimental network with network emulators show that the proposed scheme can improve the aggregation throughput better than the conventional schemes. We also evaluate the performance using public wireless network services, such as HSDPA, WiMAX and W-CDMA, and verify that the proposed scheme can improve the aggregation throughput by iterating the learning cycle even for the public wireless networks. Our experimental results show that the proposed scheme achieves twice better aggregation throughput than the conventional schemes.

  • A Supervised Classification Approach for Measuring Relational Similarity between Word Pairs

    Danushka BOLLEGALA  Yutaka MATSUO  Mitsuru ISHIZUKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:11
      Page(s):
    2227-2233

    Measuring the relational similarity between word pairs is important in numerous natural language processing tasks such as solving word analogy questions, classifying noun-modifier relations and disambiguating word senses. We propose a supervised classification method to measure the similarity between semantic relations that exist between words in two word pairs. First, each pair of words is represented by a vector of automatically extracted lexical patterns. Then a binary Support Vector Machine is trained to recognize word pairs with similar semantic relations to a given word pair. To train and evaluate the proposed method, we use a benchmark dataset that contains 374 SAT multiple-choice word-analogy questions. To represent the relations that exist between two word pairs, we experiment with 11 different feature functions, including both symmetric and asymmetric feature functions. Our experimental results show that the proposed method outperforms several previously proposed relational similarity measures on this benchmark dataset, achieving an SAT score of 46.9.

  • Optimal Gaussian Kernel Parameter Selection for SVM Classifier

    Xu YANG  HuiLin XIONG  Xin YANG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:12
      Page(s):
    3352-3358

    The performance of the kernel-based learning algorithms, such as SVM, depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks. In this paper, we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion, which measures the data distribution in the kernel-induced feature space, and is invariant under any non-singular linear transformation. The experimental results show that both the class separability of the data in the kernel-induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter.

  • A Family-Based Evolutional Approach for Kernel Tree Selection in SVMs

    Ithipan METHASATE  Thanaruk THEERAMUNKONG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:4
      Page(s):
    909-921

    Finding a kernel mapping function for support vector machines (SVMs) is a key step towards construction of a high-performanced SVM-based classifier. While some recent methods exploited an evolutional approach to construct a suitable multifunction kernel, most of them searched randomly and diversely. In this paper, the concept of a family of identical-structured kernel trees is proposed to enable exploration of structure space using genetic programming whereas to pursue investigation of parameter space on a certain tree using evolution strategy. To control balance between structure and parameter search towards an optimal kernel, simulated annealing is introduced. By experiments on a number of benchmark datasets in the UCI and text classification collection, the proposed method is shown to be able to find a better optimal solution than other search methods, including grid search and gradient search.

  • Recent Advances and Trends in Large-Scale Kernel Methods

    Hisashi KASHIMA  Tsuyoshi IDE  Tsuyoshi KATO  Masashi SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E92-D No:7
      Page(s):
    1338-1353

    Kernel methods such as the support vector machine are one of the most successful algorithms in modern machine learning. Their advantage is that linear algorithms are extended to non-linear scenarios in a straightforward way by the use of the kernel trick. However, naive use of kernel methods is computationally expensive since the computational complexity typically scales cubically with respect to the number of training samples. In this article, we review recent advances in the kernel methods, with emphasis on scalability for massive problems.

  • Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization

    Dong Seong KIM  Jong Sou PARK  

     
    PAPER-Application Information Security

      Vol:
    E91-D No:4
      Page(s):
    1050-1057

    Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.

  • CombNET-III with Nonlinear Gating Network and Its Application in Large-Scale Classification Problems

    Mauricio KUGLER  Susumu KUROYANAGI  Anto Satriyo NUGROHO  Akira IWATA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:2
      Page(s):
    286-295

    Modern applications of pattern recognition generate very large amounts of data, which require large computational effort to process. However, the majority of the methods intended for large-scale problems aim to merely adapt standard classification methods without considering if those algorithms are appropriated for large-scale problems. CombNET-II was one of the first methods specifically proposed for such kind of a task. Recently, an extension of this model, named CombNET-III, was proposed. The main modifications over the previous model was the substitution of the expert networks by Support Vectors Machines (SVM) and the development of a general probabilistic framework. Although the previous model's performance and flexibility were improved, the low accuracy of the gating network was still compromising CombNET-III's classification results. In addition, due to the use of SVM based experts, the computational complexity is higher than CombNET-II. This paper proposes a new two-layered gating network structure that reduces the compromise between number of clusters and accuracy, increasing the model's performance with only a small complexity increase. This high-accuracy gating network also enables the removal the low confidence expert networks from the decoding procedure. This, in addition to a new faster strategy for calculating multiclass SVM outputs significantly reduced the computational complexity. Experimental results of problems with large number of categories show that the proposed model outperforms the original CombNET-III, while presenting a computational complexity more than one order of magnitude smaller. Moreover, when applied to a database with a large number of samples, it outperformed all compared methods, confirming the proposed model's flexibility.

  • Joint Blind Super-Resolution and Shadow Removing

    Jianping QIAO  Ju LIU  Yen-Wei CHEN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:12
      Page(s):
    2060-2069

    Most learning-based super-resolution methods neglect the illumination problem. In this paper we propose a novel method to combine blind single-frame super-resolution and shadow removal into a single operation. Firstly, from the pattern recognition viewpoint, blur identification is considered as a classification problem. We describe three methods which are respectively based on Vector Quantization (VQ), Hidden Markov Model (HMM) and Support Vector Machines (SVM) to identify the blur parameter of the acquisition system from the compressed/uncompressed low-resolution image. Secondly, after blur identification, a super-resolution image is reconstructed by a learning-based method. In this method, Logarithmic-wavelet transform is defined for illumination-free feature extraction. Then an initial estimation is obtained based on the assumption that small patches in low-resolution space and patches in high-resolution space share a similar local manifold structure. The unknown high-resolution image is reconstructed by projecting the intermediate result into general reconstruction constraints. The proposed method simultaneously achieves blind single-frame super-resolution and image enhancement especially shadow removal. Experimental results demonstrate the effectiveness and robustness of our method.

  • Word Error Rate Minimization Using an Integrated Confidence Measure

    Akio KOBAYASHI  Kazuo ONOE  Shinichi HOMMA  Shoei SATO  Toru IMAI  

     
    PAPER-Speech and Hearing

      Vol:
    E90-D No:5
      Page(s):
    835-843

    This paper describes a new criterion for speech recognition using an integrated confidence measure to minimize the word error rate (WER). The conventional criteria for WER minimization obtain the expected WER of a sentence hypothesis merely by comparing it with other hypotheses in an n-best list. The proposed criterion estimates the expected WER by using an integrated confidence measure with word posterior probabilities for a given acoustic input. The integrated confidence measure, which is implemented as a classifier based on maximum entropy (ME) modeling or support vector machines (SVMs), is used to acquire probabilities reflecting whether the word hypotheses are correct. The classifier is comprised of a variety of confidence measures and can deal with a temporal sequence of them to attain a more reliable confidence. Our proposed criterion for minimizing WER achieved a WER of 9.8% and a 3.9% reduction, relative to conventional n-best rescoring methods in transcribing Japanese broadcast news in various environments such as under noisy field and spontaneous speech conditions.

  • Support Vector Machines Based Generalized Predictive Control of Chaotic Systems

    Serdar IPLIKCI  

     
    PAPER-Control, Neural Networks and Learning

      Vol:
    E89-A No:10
      Page(s):
    2787-2794

    This work presents an application of the previously proposed Support Vector Machines Based Generalized Predictive Control (SVM-Based GPC) method [1] to the problem of controlling chaotic dynamics with small parameter perturbations. The Generalized Predictive Control (GPC) method, which is included in the class of Model Predictive Control, necessitates an accurate model of the plant that plays very crucial role in the control loop. On the other hand, chaotic systems exhibit very complex behavior peculiar to them and thus it is considerably difficult task to get their accurate model in the whole phase space. In this work, the Support Vector Machines (SVMs) regression algorithm is used to obtain an acceptable model of a chaotic system to be controlled. SVM-Based GPC exploits some advantages of the SVM approach and utilizes the obtained model in the GPC structure. Simulation results on several chaotic systems indicate that the SVM-Based GPC scheme provides an excellent performance with respect to local stabilization of the target (an originally unstable equilibrium point). Furthermore, it somewhat performs targeting, the task of steering the chaotic system towards the target by applying relatively small parameter perturbations. It considerably reduces the waiting time until the system, starting from random initial conditions, enters the local control region, a small neighborhood of the chosen target. Moreover, SVM-Based GPC maintains its performance in the case that the measured output is corrupted by an additive Gaussian noise.

  • An Efficient Method for Simplifying Decision Functions of Support Vector Machines

    Jun GUO  Norikazu TAKAHASHI  Tetsuo NISHI  

     
    PAPER-Control, Neural Networks and Learning

      Vol:
    E89-A No:10
      Page(s):
    2795-2802

    A novel method to simplify decision functions of support vector machines (SVMs) is proposed in this paper. In our method, a decision function is determined first in a usual way by using all training samples. Next those support vectors which contribute less to the decision function are excluded from the training samples. Finally a new decision function is obtained by using the remaining samples. Experimental results show that the proposed method can effectively simplify decision functions of SVMs without reducing the generalization capability.

  • CombNET-III: A Support Vector Machine Based Large Scale Classifier with Probabilistic Framework

    Mauricio KUGLER  Susumu KUROYANAGI  Anto Satriyo NUGROHO  Akira IWATA  

     
    PAPER-Pattern Recognition

      Vol:
    E89-D No:9
      Page(s):
    2533-2541

    Several research fields have to deal with very large classification problems, e.g. handwritten character recognition and speech recognition. Many works have proposed methods to address problems with large number of samples, but few works have been done concerning problems with large numbers of classes. CombNET-II was one of the first methods proposed for such a kind of task. It consists of a sequential clustering VQ based gating network (stem network) and several Multilayer Perceptron (MLP) based expert classifiers (branch networks). With the objectives of increasing the classification accuracy and providing a more flexible model, this paper proposes a new model based on the CombNET-II structure, the CombNET-III. The new model, intended for, but not limited to, problems with large number of classes, replaces the branch networks MLP with multiclass Support Vector Machines (SVM). It also introduces a new probabilistic framework that outputs posterior class probabilities, enabling the model to be applied in different scenarios (e.g. together with Hidden Markov Models). These changes permit the use of a larger number of smaller clusters, which reduce the complexity of the final classifiers. Moreover, the use of binary SVM with probabilistic outputs and a probabilistic decoding scheme permit the use of a pairwise output encoding on the branch networks, which reduces the computational complexity of the training stage. The experimental results show that the proposed model outperforms both the previous model CombNET-II and a single multiclass SVM, while presenting considerably smaller complexity than the latter. It is also confirmed that CombNET-III classification accuracy scales better with the increasing number of clusters, in comparison with CombNET-II.

  • Detection of Overlapping Speech in Meetings Using Support Vector Machines and Support Vector Regression

    Kiyoshi YAMAMOTO  Futoshi ASANO  Takeshi YAMADA  Nobuhiko KITAWAKI  

     
    PAPER-Engineering Acoustics

      Vol:
    E89-A No:8
      Page(s):
    2158-2165

    In this paper, a method of detecting overlapping speech segments in meetings is proposed. It is known that the eigenvalue distribution of the spatial correlation matrix calculated from a multiple microphone input reflects information on the number and relative power of sound sources. However, in a reverberant sound field, the feature of the number of sources in the eigenvalue distribution is degraded by the room reverberation. In the Support Vector Machines approach, the eigenvalue distribution is classified into two classes (overlapping speech segments and single speech segments). In the Support Vector Regression approach, the relative power of sound sources is estimated by using the eigenvalue distribution, and overlapping speech segments are detected based on the estimated relative power. The salient feature of this approach is that the sensitivity of detecting overlapping speech segments can be controlled simply by changing the threshold value of the relative power. The proposed method was evaluated using recorded data of an actual meeting.

  • Adaptive Morse Code Recognition Using Support Vector Machines for Persons with Physical Disabilities

    Cheng-Hong YANG  Li-Yeh CHUANG  Cheng-Huei YANG  Ching-Hsing LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:7
      Page(s):
    1995-2002

    In this paper, Morse code is selected as a communication adaptive device for persons whose hand coordination and dexterity are impaired by such ailments as amyotrophic lateral sclerosis, multiple sclerosis, muscular dystrophy, and other severe handicaps. Morse code is composed of a series of dots, dashes, and space intervals, and each element is transmitted by sending a signal for a defined length of time. A suitable adaptive automatic recognition method is needed for persons with disabilities due to their difficulty in maintaining a stable typing rate. To overcome this problem, the proposed method combines the support vector machines method with a variable degree variable step size LMS algorithm. The method is divided into five stages: tone recognition, space recognition, training process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods from the literature.

1-20hit(25hit)