The search functionality is under construction.

Keyword Search Result

[Keyword] surface states(3hit)

1-3hit
  • 2D Device Simulation of AlGaN/GaN HFET Current Collapse Caused by Surface Negative Charge Injection

    Yusuke IKAWA  Yorihide YUASA  Cheng-Yu HU  Jin-Ping AO  Yasuo OHNO  

     
    PAPER-GaN-based Devices

      Vol:
    E93-C No:8
      Page(s):
    1218-1224

    Drain collapse in AlGaN/GaN HFET is analyzed using a two-dimensional device simulator. Two-step saturation is obtained, assuming hole-trap type surface states on the AlGaN surface and a short negative-charge-injected region at the drain side of the gate. Due to the surface electric potential pinning by the surface traps, the negative charge injected region forms a constant potential like in a metal gate region and it acts as an FET with a virtual gate. The electron concentration profile reveals that the first saturation occurs by pinch-off in the virtual gate region and the second saturation occurs by the pinch-off in the metal gate region. Due to the short-channel effect of the virtual gate FET, the saturation current increases until it finally reaches the saturation current of the intrinsic metal gate FET. Current collapses with current degradation at the knee voltage in the I-V characteristics can be explained by the formation of the virtual gate.

  • Gate Leakage in AlGaN/GaN Heterostructure Field Effect Transistors and Its Suppression by Novel Al2O3 Insulated Gate

    Shinya OOTOMO  Hideki HASEGAWA  Tamotsu HASHIZUME  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    2043-2050

    In order to clarify the mechanism of gate leakage in AlGaN/GaN heterostructure field effect transistors (HFETs), temperature (T)-dependent current-voltage (I-V) characteristics of Ni/n-AlGaN Schottky contact were measured in detail. Large deviations from the thermionic emission transport were observed in I-V-T behavior with anomalously large reverse leakage currents. An analysis based on the thin surface barrier (TSB) model showed that the nitrogen-vacancy-related near-surface donors play a dominant role in the leakage through the AlGaN Schottky interface. As a practical scheme for suppressing the leakage currents, use of an insulated gate (IG) structure was investigated. As the insulator, Al2O3 was selected, and an Al2O3 IG structure was formed on the AlGaN/GaN heterostructure surface after an ECR-N2 plasma treatment. An in-situ XPS analysis exhibited successful formation of an ultrathin stoichiometric Al2O3 layer which has a large conduction band offset of 2.1 eV at the Al2O3/Al0.3Ga0.7N interface. The fabricated Al2O3 IG HFET achieved pronounced reduction of gate leakage, resulting in the good gate control of drain currents up to VGS = +3 V. The maximum drain saturation current and transconductance were 0.8 A/mm and 120 mS/mm, respectively. No current collapse was observed in the Al2O3 IG-HFETs, indicating a remarkable advantage of the present Al2O3-based insulated gate and passivation structure.

  • A Low Dark Current CCD Linear Image Sensor

    Masao YAMAWAKI  Yuichi KUNORI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E80-C No:1
      Page(s):
    154-159

    A low dark current CCD linear image sensor with pixels consisting of a photodiode and a storage area has been developed. In order to suppress the dark current, the wafer process has been improved. An impurity profile of a photodiode was modified to minimize depletion width, which was monitored by the photodiode potential. Surface states under the storage gate were decreased by hydrogen annealing with plasma-deposited silicon nitride as an inter metal dielectric film. As the isolation dose decreased, the dark current both in the photodiode and in the storage region were effectively suppressed. Finally, low dark currents of 5 pA/cm2 at photodiode and 120 pA/cm2 at storage area were obtained.