The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surveillance(60hit)

1-20hit(60hit)

  • 2D Human Skeleton Action Recognition Based on Depth Estimation Open Access

    Lei WANG  Shanmin YANG  Jianwei ZHANG  Song GU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/02/27
      Vol:
    E107-D No:7
      Page(s):
    869-877

    Human action recognition (HAR) exhibits limited accuracy in video surveillance due to the 2D information captured with monocular cameras. To address the problem, a depth estimation-based human skeleton action recognition method (SARDE) is proposed in this study, with the aim of transforming 2D human action data into 3D format to dig hidden action clues in the 2D data. SARDE comprises two tasks, i.e., human skeleton action recognition and monocular depth estimation. The two tasks are integrated in a multi-task manner in end-to-end training to comprehensively utilize the correlation between action recognition and depth estimation by sharing parameters to learn the depth features effectively for human action recognition. In this study, graph-structured networks with inception blocks and skip connections are investigated for depth estimation. The experimental results verify the effectiveness and superiority of the proposed method in skeleton action recognition that the method reaches state-of-the-art on the datasets.

  • Multi-Agent Surveillance Based on Travel Cost Minimization

    Kyohei MURAKATA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    25-30

    The multi-agent surveillance problem is to find optimal trajectories of multiple agents that patrol a given area as evenly as possible. In this paper, we consider the multi-agent surveillance problem based on travel cost minimization. The surveillance area is given by an undirected graph. The penalty for each agent is introduced to evaluate the surveillance performance. Through a mixed logical dynamical system model, the multi-agent surveillance problem is reduced to a mixed integer linear programming (MILP) problem. In model predictive control, trajectories of agents are generated by solving the MILP problem at each discrete time. Furthermore, a condition that the MILP problem is always feasible is derived based on the Chinese postman problem. Finally, the proposed method is demonstrated by a numerical example.

  • Reinforcement Learning for Multi-Agent Systems with Temporal Logic Specifications

    Keita TERASHIMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    31-37

    In a multi-agent system, it is important to consider a design method of cooperative actions in order to achieve a common goal. In this paper, we propose two novel multi-agent reinforcement learning methods, where the control specification is described by linear temporal logic formulas, which represent a common goal. First, we propose a simple solution method, which is directly extended from the single-agent case. In this method, there are some technical issues caused by the increase in the number of agents. Next, to overcome these technical issues, we propose a new method in which an aggregator is introduced. Finally, these two methods are compared by numerical simulations, with a surveillance problem as an example.

  • Reconfigurable Pedestrian Detection System Using Deep Learning for Video Surveillance

    M.K. JEEVARAJAN  P. NIRMAL KUMAR  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/06/09
      Vol:
    E106-D No:9
      Page(s):
    1610-1614

    We present a reconfigurable deep learning pedestrian detection system for surveillance systems that detect people with shadows in different lighting and heavily occluded conditions. This work proposes a region-based CNN, combined with CMOS and thermal cameras to obtain human features even under poor lighting conditions. The main advantage of a reconfigurable system with respect to processor-based systems is its high performance and parallelism when processing large amount of data such as video frames. We discuss the details of hardware implementation in the proposed real-time pedestrian detection algorithm on a Zynq FPGA. Simulation results show that the proposed integrated approach of R-CNN architecture with cameras provides better performance in terms of accuracy, precision, and F1-score. The performance of Zynq FPGA was compared to other works, which showed that the proposed architecture is a good trade-off in terms of quality, accuracy, speed, and resource utilization.

  • A Shallow SNN Model for Embedding Neuromorphic Devices in a Camera for Scalable Video Surveillance Systems

    Kazuhisa FUJIMOTO  Masanori TAKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1175-1182

    Neuromorphic computing with a spiking neural network (SNN) is expected to provide a complement or alternative to deep learning in the future. The challenge is to develop optimal SNN models, algorithms, and engineering technologies for real use cases. As a potential use cases for neuromorphic computing, we have investigated a person monitoring and worker support with a video surveillance system, given its status as a proven deep neural network (DNN) use case. In the future, to increase the number of cameras in such a system, we will need a scalable approach that embeds only a few neuromorphic devices in a camera. Specifically, this will require a shallow SNN model that can be implemented in a few neuromorphic devices while providing a high recognition accuracy comparable to a DNN with the same configuration. A shallow SNN was built by converting ResNet, a proven DNN for image recognition, and a new configuration of the shallow SNN model was developed to improve its accuracy. The proposed shallow SNN model was evaluated with a few neuromorphic devices, and it achieved a recognition accuracy of more than 80% with about 1/130 less energy consumption than that of a GPU with the same configuration of DNN as that of SNN.

  • An Autoencoder Based Background Subtraction for Public Surveillance

    Yue LI  Xiaosheng YU  Haijun CAO  Ming XU  

     
    LETTER-Image

      Pubricized:
    2021/04/08
      Vol:
    E104-A No:10
      Page(s):
    1445-1449

    An autoencoder is trained to generate the background from the surveillance image by setting the training label as the shuffled input, instead of the input itself in a traditional autoencoder. Then the multi-scale features are extracted by a sparse autoencoder from the surveillance image and the corresponding background to detect foreground.

  • Self-Learning pLSA Model for Abnormal Behavior Detection in Crowded Scenes

    Shuoyan LIU  Enze YANG  Kai FANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/11/30
      Vol:
    E104-D No:3
      Page(s):
    473-476

    Abnormal behavior detection is now a widely concerned research field, especially for crowded scenes. However, most traditional unsupervised approaches often suffered from the problem when the normal events in the scenario with large visual variety. This paper proposes a self-learning probabilistic Latent Semantic Analysis, which aims at taking full advantage of the high-level abnormal information to solve problems. We select the informative observations to construct the “reference events” from the training sets as a high-level guidance cue. Specifically, the training set is randomly divided into two separate subsets. One is used to learn this model, which is defined as the initialization sequence of “reference events”. The other aims to update this model and the the infrequent samples are chosen into the “reference events”. Finally, we define anomalies using events that are least similar to “reference events”. The experimental result demonstrates that the proposed model can detect anomalies accurately and robustly in the real-world crowd environment.

  • Practical Video Authentication Scheme to Analyze Software Characteristics

    Wan Yeon LEE  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2020/09/30
      Vol:
    E104-D No:1
      Page(s):
    212-215

    We propose a video authentication scheme to verify whether a given video file is recorded by a camera device or touched by a video editing tool. The proposed scheme prepares software characteristics of camera devices and video editing tools in advance, and compares them with the metadata of the given video file. Through practical implementation, we show that the proposed scheme has benefits of fast analysis time, high accuracy and full automation.

  • Temporal Domain Difference Based Secondary Background Modeling Algorithm

    Guowei TENG  Hao LI  Zhenglong YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:2
      Page(s):
    571-575

    This paper proposes a temporal domain difference based secondary background modeling algorithm for surveillance video coding. The proposed algorithm has three key technical contributions as following. Firstly, the LDBCBR (Long Distance Block Composed Background Reference) algorithm is proposed, which exploits IBBS (interval of background blocks searching) to weaken the temporal correlation of the foreground. Secondly, both BCBR (Block Composed Background Reference) and LDBCBR are exploited at the same time to generate the temporary background reference frame. The secondary modeling algorithm utilizes the temporary background blocks generated by BCBR and LDBCBR to get the final background frame. Thirdly, monitor the background reference frame after it is generated is also important. We would update the background blocks immediately when it has a big change, shorten the modeling period of the areas where foreground moves frequently and check the stable background regularly. The proposed algorithm is implemented in the platform of IEEE1857 and the experimental results demonstrate that it has significant improvement in coding efficiency. In surveillance test sequences recommended by the China AVS (Advanced Audio Video Standard) working group, our method achieve BD-Rate gain by 6.81% and 27.30% comparing with BCBR and the baseline profile.

  • Dynamic Surveillance by Multiple Agents with Fuel Constraints

    Ryo MASUDA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    462-468

    The surveillance problem is to find optimal trajectories of agents that patrol a given area as evenly as possible. In this paper, we consider multiple agents with fuel constraints. The surveillance area is given by a weighted directed graph, where the weight assigned to each arc corresponds to the fuel consumption/supply. For each node, the penalty to evaluate the unattended time is introduced. Penalties, agents, and fuels are modeled by a mixed logical dynamical system model. Then, the surveillance problem is reduced to a mixed integer linear programming (MILP) problem. Based on the policy of model predictive control, the MILP problem is solved at each discrete time. In this paper, the feasibility condition for the MILP problem is derived. Finally, the proposed method is demonstrated by a numerical example.

  • Synchronized Tracking in Multiple Omnidirectional Cameras with Overlapping View

    Houari SABIRIN  Hitoshi NISHIMURA  Sei NAITO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/24
      Vol:
    E102-D No:11
      Page(s):
    2221-2229

    A multi-camera setup for a surveillance system enables a larger coverage area, especially when a single camera has limited monitoring capability due to certain obstacles. Therefore, for large-scale coverage, multiple cameras are the best option. In this paper, we present a method for detecting multiple objects using several cameras with large overlapping views as this allows synchronization of object identification from a number of views. The proposed method uses a graph structure that is robust enough to represent any detected moving objects by defining their vertices and edges to determine their relationships. By evaluating these object features, represented as a set of attributes in a graph, we can perform lightweight multiple object detection using several cameras, as well as performing object tracking within each camera's field of view and between two cameras. By evaluating each vertex hierarchically as a subgraph, we can further observe the features of the detected object and perform automatic separation of occluding objects. Experimental results show that the proposed method would improve the accuracy of object tracking by reducing the occurrences of incorrect identification compared to individual camera-based tracking.

  • A Foreground-Background-Based CTU λ Decision Algorithm for HEVC Rate Control of Surveillance Videos

    Zhenglong YANG  Guozhong WANG  GuoWei TENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/12/18
      Vol:
    E102-D No:3
      Page(s):
    670-674

    Although HEVC rate control can achieve high coding efficiency, it still does not fully utilize the special characteristics of surveillance videos, which typically have a moving foreground and relatively static background. For surveillance videos, it is usually necessary to provide a better coding quality of the moving foreground. In this paper, a foreground-background CTU λ separate decision scheme is proposed. First, low-complexity pixel-based segmentation is presented to obtain the foreground and the background. Second, the rate distortion (RD) characteristics of the foreground and the background are explored. With the rate distortion optimization (RDO) process, the average CTU λ value of the foreground or the background should be equal to the frame λ. Then, a separate optimal CTU λ decision is proposed with a separate λ clipping method. Finally, a separate updating process is used to obtain reasonable parameters for the foreground and the background. The experimental results show that the quality of the foreground is improved by 0.30 dB in the random access configuration and 0.45 dB in the low delay configuration without degradation of either the rate control accuracy or whole frame quality.

  • Camera Selection in Far-Field Video Surveillance Networks

    Kaimin CHEN  Wei LI  Zhaohuan ZHAN  Binbin LIANG  Songchen HAN  

     
    PAPER-Network

      Pubricized:
    2018/08/29
      Vol:
    E102-B No:3
      Page(s):
    528-536

    Since camera networks for surveillance are becoming extremely dense, finding the most informative and desirable views from different cameras are of increasing importance. In this paper, we propose a camera selection method to achieve the goal of providing the clearest visibility possible and selecting the cameras which exactly capture targets for the far-field surveillance. We design a benefit function that takes into account image visibility and the degree of target matching between different cameras. Here, visibility is defined using the entropy of intensity histogram distribution, and the target correspondence is based on activity features rather than photometric features. The proposed solution is tested in both artificial and real environments. A performance evaluation shows that our target correspondence method well suits far-field surveillance, and our proposed selection method is more effective at identifying the cameras that exactly capture the surveillance target than existing methods.

  • Computationally Efficient Model Predictive Control for Multi-Agent Surveillance Systems

    Koichi KOBAYASHI  Mifuyu KIDO  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    372-378

    In this paper, a surveillance system by multiple agents, which is called a multi-agent surveillance system, is studied. A surveillance area is given by an undirected connected graph. Then, the optimal control problem for multi-agent surveillance systems (the optimal surveillance problem) is to find trajectories of multiple agents that travel each node as evenly as possible. In our previous work, this problem is reduced to a mixed integer linear programming problem. However, the computation time for solving it exponentially grows with the number of agents. To overcome this technical issue, a new model predictive control method for multi-agent surveillance systems is proposed. First, a procedure of individual optimization, which is a kind of approximate solution methods, is proposed. Next, a method to improve the control performance is proposed. In addition, an event-triggering condition is also proposed. The effectiveness of the proposed method is presented by a numerical example.

  • Moving Target Detection and Two-Receiver Setup Using Optical-Fiber-Connected Passive Primary Surveillance Radar

    Masato WATANABE  Junichi HONDA  Takuya OTSUYAMA  

     
    PAPER-Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    241-246

    Multi-static Primary Surveillance Radar (MSPSR) has recently attracted attention as a new surveillance technology for civil aviation. Using multiple receivers, Primary Surveillance Radar (PSR) detection performance can be improved by synthesizing the reflection characteristics which change due to the aircraft's position. In this paper, we report experimental results from our proposed optical-fiber-connected passive PSR system with transmit signal installed at the Sendai Airport in Japan. The signal-to noise ratio of experimental data is evaluated to verify moving target detection. In addition, we confirm the operation of the proposed system using a two-receiver setup, to resemble a conventional multi-static radar. Finally, after applying time correction, the delay of the reflected signal from a stationary target remains within the expected range.

  • Crowd Gathering Detection Based on the Foreground Stillness Model

    Chun-Yu LIU  Wei-Hao LIAO  Shanq-Jang RUAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1968-1971

    The abnormal crowd behavior detection is an important research topic in computer vision to improve the response time of critical events. In this letter, we introduce a novel method to detect and localize the crowd gathering in surveillance videos. The proposed foreground stillness model is based on the foreground object mask and the dense optical flow to measure the instantaneous crowd stillness level. Further, we obtain the long-term crowd stillness level by the leaky bucket model, and the crowd gathering behavior can be detected by the threshold analysis. Experimental results indicate that our proposed approach can detect and locate crowd gathering events, and it is capable of distinguishing between standing and walking crowd. The experiments in realistic scenes with 88.65% accuracy for detection of gathering frames show that our method is effective for crowd gathering behavior detection.

  • Proactive Eavesdropping through a Third-Party Jammer

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:5
      Page(s):
    878-882

    This letter considers a legitimate proactive eavesdropping scenario, where a half-duplex legitimate monitor hires a third-party jammer for jamming the suspicious communication to improve the eavesdropping performance. The interaction between the third-party jammer and the monitor is modeled as a Stackelberg game, where the jammer moves first and sets the price for jamming the suspicious communication, and then the legitimate monitor moves subsequently and determines the requested transmit power of the jamming signals. We derive the optimal jamming price and the optimal jamming transmit power. It is shown that the proposed price-based proactive eavesdropping scheme is effective in improving the successful eavesdropping probability compared to the case without jamming. It is also shown that the proposed scheme outperforms the existing full-duplex scheme when the residual self-interference cannot be neglected.

  • Intelligent Video Surveillance System Based on Event Detection and Rate Adaptation by Using Multiple Sensors

    Kenji KANAI  Keigo OGAWA  Masaru TAKEUCHI  Jiro KATTO  Toshitaka TSUDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    688-697

    To reduce the backbone video traffic generated by video surveillance, we propose an intelligent video surveillance system that offers multi-modal sensor-based event detection and event-driven video rate adaptation. Our proposed system can detect pedestrian existence and movements in the monitoring area by using multi-modal sensors (camera, laser scanner and infrared distance sensor) and control surveillance video quality according to the detected events. We evaluate event detection accuracy and video traffic volume in the experiment scenarios where up to six pedestrians pass through and/or stop at the monitoring area. Evaluation results conclude that our system can significantly reduce video traffic while ensuring high-quality surveillance.

  • Legitimate Surveillance with a Wireless Powered Monitor in Rayleigh Fading Channels

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:1
      Page(s):
    293-297

    This letter investigates the performance of a legitimate surveillance system, where a wireless powered legitimate monitor aims to eavesdrop a suspicious communication link. Power splitting technique is adopted at the monitor for simultaneous information eavesdropping and energy harvesting. In order to maximize the successful eavesdropping probability, the power splitting ratio is optimized under the minimum harvested energy constraint. Assuming that perfect channel state information (CSI) or only the channel distribution information (CDI) is available, the closed-form maximum successful eavesdropping probability is obtained in Rayleigh fading channels. It is shown that the minimum harvested energy constraint has no impact on the eavesdropping performance if the minimum harvested energy constraint is loose. It is also shown that the eavesdropping performance loss due to partial knowledge of CSI is negligible when the eavesdropping link channel condition is much better than that of the suspicious communication link channel.

  • Speech Privacy for Sound Surveillance Using Super-Resolution Based on Maximum Likelihood and Bayesian Linear Regression

    Ryouichi NISHIMURA  Seigo ENOMOTO  Hiroaki KATO  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    53-63

    Surveillance with multiple cameras and microphones is promising to trace activities of suspicious persons for security purposes. When these sensors are connected to the Internet, they might also jeopardize innocent people's privacy because, as a result of human error, signals from sensors might allow eavesdropping by malicious persons. This paper presents a proposal for exploiting super-resolution to address this problem. Super-resolution is a signal processing technique by which a high-resolution version of a signal can be reproduced from a low-resolution version of the same signal source. Because of this property, an intelligible speech signal is reconstructed from multiple sensor signals, each of which is completely unintelligible because of its sufficiently low sampling rate. A method based on Bayesian linear regression is proposed in comparison with one based on maximum likelihood. Computer simulations using a simple sinusoidal input demonstrate that the methods restore the original signal from those which are actually measured. Moreover, results show that the method based on Bayesian linear regression is more robust than maximum likelihood under various microphone configurations in noisy environments and that this advantage is remarkable when the number of microphones enrolled in the process is as small as the minimum required. Finally, listening tests using speech signals confirmed that mean opinion score (MOS) of the reconstructed signal reach 3, while those of the original signal captured at each single microphone are almost 1.

1-20hit(60hit)