The search functionality is under construction.

Keyword Search Result

[Keyword] three dimensional(13hit)

1-13hit
  • Concept Demonstration of 3D Waveguides Shuffle Converter for Multi-Core Fiber/Single-Mode Fiber Fan-in Fan-out Configuration Toward Over 1,000 Port Count

    Haisong JIANG  Yasuhiro HINOKUMA  Sampad GHOSH  Ryota KUWAHATA  kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/05/25
      Vol:
    E104-C No:1
      Page(s):
    34-36

    A novel shuffle converter by using 3D waveguide of MCF (multi-core fiber)/SMF (single mode fiber) ribbon fan-in fan-out configuration towards over 1,000 port count optical matrix switch has been proposed. The shuffle converter enables to avoid waveguide crossing section in the optical matrix switch configuration, and the principle device showed sufficient crosstalk of less than -54.2 dB, and insertion loss of 2.1 dB successfully.

  • Three Dimensional FPGA Architecture with Fewer TSVs

    Motoki AMAGASAKI  Masato IKEBE  Qian ZHAO  Masahiro IIDA  Toshinori SUEYOSHI  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    278-287

    Three-dimensional (3D) field-programmable gate arrays (FPGAs) are expected to offer higher logic density as well as improved delay and power performance by utilizing 3D integrated circuit technology. However, because through-silicon-vias (TSVs) for conventional 3D FPGA interlayer connections have a large area overhead, there is an inherent tradeoff between connectivity and small size. To find a balance between cost and performance, and to explore 3D FPGAs with realistic 3D integration processes, we propose two types of 3D FPGA and construct design tool sets for architecture exploration. In previous research, we created a TSV-free 3D FPGA with a face-down integration method; however, this was limited to two layers. In this paper, we discuss the face-up stacking of several face-down stacked FPGAs. To minimize the number of TSVs, we placed TSVs peripheral to the FPGAs for 3D-FPGA with 4 layers. According to our results, a 2-layer 3D FPGA has reasonable performance when limiting the design to two layers, but a 4-layer 3D FPGA is a better choice when area is emphasized.

  • Demonstration of Three-Dimensional Near-Field Beamforming by Planar Loop Array for Magnetic Resonance Wireless Power Transfer

    Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1449-1453

    This paper presents a capacitor-loaded 4x4 planar loop array for three-dimensional near-field beamforming of magnetic resonance wireless power transfer (WPT). This planar loop array provides three important functions: beamforming, selective power transfer, and the ability to work alignment free with the receiver. These functions are realized by adjusting the capacitance of each loop. The optimal capacitance of each loop that corresponds to the three functions can be found using a genetic algorithm (GA); the three functions were verified by comparing simulations and measurements at a frequency of 6.78MHz. Finally, the beamforming mechanism of a near-field loop array was investigated using the relationship between the current magnitude and the resonance frequency of each loop, resulting in the findings that the magnitude and the resonance frequency are correlated. This focused current of the specified loop creates a strong magnetic field in front of that loop, resulting in near-field beamforming.

  • Adaptive Directional Lifting Structure of Three Dimensional Non-Separable Discrete Wavelet Transform for High Resolution Volumetric Data Compression

    Fairoza Amira BINTI HAMZAH  Taichi YOSHIDA  Masahiro IWAHASHI  Hitoshi KIYA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:5
      Page(s):
    892-899

    As three dimensional (3D) discrete wavelet transform (DWT) is widely used for high resolution volumetric data compression, and to further improve the performance of lossless coding, the adaptive directional lifting (ADL) structure based on non-separable 3D DWT with a (5,3) filter is proposed in this paper. The proposed 3D DWT has less lifting steps and better prediction performance compared to the existing separable 3D DWT with fixed filter coefficients. It also has compatibility with the conventional DWT defined by the JPEG2000 international standard. The proposed method shows comparable and better results with the non-separable 3D DWT and separable 3D DWT and it is effective for lossless coding of high resolution volumetric data.

  • A Simplified 3D Localization Scheme Using Flying Anchors

    Quan Trung HOANG  Yoan SHIN  

     
    LETTER-Network

      Vol:
    E94-B No:12
      Page(s):
    3588-3591

    WSNs (Wireless Sensor Networks) are becoming more widely used in various fields, and localization is a crucial and essential issue for sensor network applications. In this letter, we propose a low-complexity localization mechanism for WSNs that operate in 3D (three-dimensional) space. The basic idea is to use aerial vehicles that are deliberately equipped with anchor nodes. These anchors periodically broadcast beacon signals containing their current locations, and unknown nodes receive these signals as soon as the anchors enter their communication range. We estimate the locations of the unknown nodes based on the proposed scheme that transforms the 3D problem into 2D computations to reduce the complexity of 3D localization. Simulated results show that our approach is an effective scheme for 3D self-positioning in WSNs.

  • Lagrangian Relaxation Based Inter-Layer Signal Via Assignment for 3-D ICs

    Song CHEN  Liangwei GE  Mei-Fang CHIANG  Takeshi YOSHIMURA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1080-1087

    Three-dimensional integrated circuits (3-D ICs), i.e., stacked dies, can alleviate the interconnect problem coming with the decreasing feature size and increasing integration density, and promise a solution to heterogenous integration. The vertical connection, which is generally implemented by the through-the-silicon via, is a key technology for 3-D ICs. In this paper, given 3-D circuit placement or floorplan results with white space reserved between blocks for inter-layer interconnections, we proposed methods for assigning inter-layer signal via locations. Introducing a grid structure on the chip, the inter-layer via assignment of two-layer chips can be optimally solved by a convex-cost max-flow formulation with signal via congestion optimized. As for 3-D ICs with three or more layers, the inter-layer signal via assignment is modeled as an integral min-cost multi-commodity flow problem, which is solved by a heuristic method based on the lagrangian relaxation. Relaxing the capacity constraints in the grids, we transfer the min-cost multi-commodity flow problem to a sequence of lagrangian sub-problems, which are solved by finding a sequence of shortest paths. The complexity of solving a lagrangian sub-problem is O(nntng2), where nnt is the number of nets and ng is the number of grids on one chip layer. The experimental results demonstrated the effectiveness of the method.

  • Depth from Defocus Using Wavelet Transform

    Muhammad ASIF  Tae-Sun CHOI  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E87-D No:1
      Page(s):
    250-253

    We propose a new method for Depth from Defocus (DFD) using wavelet transform. Most of the existing DFD methods use inverse filtering in a transform domain to determine the measure of defocus. These methods suffer from inaccuracies in finding the frequency domain representation due to windowing and border effects. The proposed method uses wavelets that allow performing both the local analysis and windowing with variable-sized regions for images with varying textural properties. Experimental results show that the proposed method gives more accurate depth maps than the previous methods.

  • Statistical Threshold Voltage Fluctuation Analysis by Monte Carlo Ion Implantation Method

    Yoshinori ODA  Yasuyuki OHKURA  Kaina SUZUKI  Sanae ITO  Hirotaka AMAKAWA  Kenji NISHI  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    416-420

    A new analysis method for random dopant induced threshold voltage fluctuations by using Monte Carlo ion implantation were presented. The method was applied to investigate Vt fluctuations due to statistical variation of pocket dopant profile in 0.1µm MOSFET's by 3D process-device simulation system. This method is very useful to analyze a statistical fluctuation in sub-100 nm MOSFET's efficiently.

  • Biologically Inspired Vision Chip with Three Dimensional Structure

    Hiroyuki KURINO  Yoshihiro NAKAGAWA  Tomonori NAKAMURA  Yusuke YAMADA  Kang-Wook LEE  Mitsumasa KOYANAGI  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1717-1722

    The smart vision chip has a large potential for application in general purpose high speed image processing systems. In order to fabricate smart vision chips including photo detector compactly, we have proposed the application of three dimensional LSI technology for smart vision chips. Three dimensional technology has great potential to realize new biologically inspired systems inspired by not only the biological function but also the biological structure. In this paper, we describe our three dimensional LSI technology for biologically inspired circuits and the design of smart vision chips.

  • The Propagation Characteristic of Laser Light on the Polystyrene Micro-Sphere Array at 10 µm Diameter

    Fujun HUANG  Shinzo MORITA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1149-1152

    The propagation characteristic of 670 nm laser light on the array of 10 µm diameter polystyrene micro-sphere was studied. For the linearly arranged array of micro-spheres from one to 12, the propagated light intensity was decreased from 700 mV to 45 mV. However, the propagated light intensity in the air was significantly decreased and it became 2 mV at 60 µm from the optical fiber light source. For the micro-sphere array on the curvilinear line, the light intensity at 12th micro-sphere became 35 mV. This fact means the light was propagated almost same as that on the linear line. Whereas it is expected that three dimensionally crossing optical wave-guide is possible to be fabricated by arranging the micro-spheres.

  • A 3-D Boundary Element Analysis of EM Wave Scattering by a Perfectly Conducting Body with Edges and Corners

    Katsuya MANABE  Yasumitsu MIYAZAKI  

     
    LETTER

      Vol:
    E78-C No:10
      Page(s):
    1460-1464

    A numerical scheme to analyze a three-dimensional perfectly conducting body that has edges and corners is presented. The geometry of the body can be arbitrary. A new formulation using boundary element method has been developed. This formulation allows that a scatterer has edges and corners, where the behavior of the electromagnetic fields become singular.

  • Resonance Characteristics of Circularly Propagating Mode in a Coaxial Dielectric Resonator

    Qing HAN  Yoshinori KOGAMI  Yoshiro TOMABECHI  Kazuhito MATSUMURA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1747-1751

    A three-dimensional analysis of Whispering-Gallery modes (W. G. modes) in a coaxial dielectric resonator is proposed and presented. The coaxial dielectric resonator is constructed from a lossy dielectric disk and ring which have diameters of several tens times as large as wavelength. Eigenvalue equations of the W. G. modes are derived rigorously from field expressions and boundary conditions. The resonant frequencies, unloaded Q values and field distributions are calculated numerically from the eigenvalue equations. These calculated results are in good agreement with experimental ones for an X band model. As a result, it is shown that a considerable quantity of modal energy can be confined in a loss-less gap between the disk and ring, and then the unloaded Q value is higher than that of a conventional dielectric disk and ring resonator.

  • Three Dimensional Optical Interconnection Technology for Massively-Parallel Computing Systems

    Kazuo KYUMA  Shuichi TAI  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1070-1079

    Three dimensional (3-D) optics offers potential advantages to the massively-parallel systems over electronics from the view point of information transfer. The purpose of this paper is to survey some aspects of the 3-D optical interconnection technology for the future massively-parallel computing systems. At first, the state-of-art of the current optoelectronic array devices to build the interconnection networks are described, with emphasis on those based on the semiconductor technology. Next, the principles, basic architectures, several examples of the 3-D optical interconnection systems in neural networks and multiprocessor systems are described. Finally, the issues that are needed to be solved for putting such technology into practical use are summarized.