The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

1801-1820hit(3578hit)

  • Scattering of TM Plane Wave from Periodic Grating with Single Defect

    Kazuhiro HATTORI  Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E91-C No:1
      Page(s):
    17-25

    This paper deals with the scattering of a TM plane wave from a periodic grating with single defect, of which position is known. The surface is perfectly conductive and made up with a periodic array of rectangular grooves and a defect where a groove is not formed. The scattered wave above grooves is written as a variation from the diffracted wave for the perfectly periodic case. Then, an integral equation for the scattering amplitude is obtained, which is solved numerically by use of truncation and the iteration method. The differential scattering cross section and the optical theorem are calculated in terms of the scattering amplitude and are illustrated in figures. It is found that incoherent Wood's anomaly appears at critical angles of scattering. The physical mechanisms of Wood's anomaly and incoherent Wood's anomaly are discussed in relation to the guided surface wave excited by the incident plane wave. It is concluded that incoherent Wood's anomaly is caused by the diffraction of the guided surface wave.

  • New Stochastic Algorithm for Optimization of Both Side Lobes and Grating Lobes in Large Antenna Arrays for MPT

    Naoki SHINOHARA  Blagovest SHISHKOV  Hiroshi MATSUMOTO  Kozo HASHIMOTO  A.K.M. BAKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:1
      Page(s):
    286-296

    The concept of placing enormous Solar Power Satellite (SPS) systems in space represents one of a handful of new technological options that might provide large scale, environmentally clean base load power to terrestrial markets. Recent advances in space exploration have shown a great need for antennas with high resolution, high gain and low side lobe level (SLL). The last characteristic is of paramount importance especially for the Microwave Power Transmission (MPT) in order to achieve higher transmitting efficiency (TE) and higher beam collection efficiency (BCE). In order to achieve low side lobe levels, statistical methods play an important role. Various interesting properties of a large antenna arrays with randomly, uniformly and combined spacing of elements have been studied, especially the relationship between the required number of elements and their appropriate spacing from one viewpoint and the desired SLL, the aperture dimension, the beamwidth and TE from the other. We propose a new unified approach in searching for reducing SLL by exploiting the interaction of deterministic and stochastic workspaces of proposed algorithms. Our models indicate the side lobe levels in a large area around the main beam and strongly reduce SLL in the entire visible range. A new concept of designing a large antenna array system is proposed. Our theoretic study and simulation results clarify how to deal with the problems of side lobes in designing a large antenna array, which seems to be an important step toward the realization of future SPS/MPT systems.

  • Novel Fiber Endface Preparation Tool for Optical Fiber Joints Employing Thermal Surface Cleaning and Thermal Endface Cutting

    Noriyoshi MATSUMOTO  Kazuo HOGARI  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E91-B No:1
      Page(s):
    207-211

    This paper proposes a novel fiber endface preparation tool for optical fiber joints that employs thermal surface cleaning and thermal endface cutting. This tool has great advantages in terms of fiber endface preparation time, and fiber endface stability when fiber is cut repeatedly. Stable thermal surface cleaning and thermal endface cutting are achieved by selecting suitable heating conditions. The fiber endface preparation time can be reduced to 50% of that required with conventional tools. The fiber endface stability obtained using thermal cutting is more than five times better than that obtained with the conventional tool using a blade.

  • Compact Silica Arrayed-Waveguide Grating Using High-Mesa Small-Bend Waveguides

    Jiro ITO  Tom Yen-Ting FAN  Takanori SUZUKI  Hiroyuki TSUDA  

     
    LETTER-Optoelectronics

      Vol:
    E91-C No:1
      Page(s):
    110-112

    A compact arrayed-waveguide grating with small-bend waveguides incorporating air trenches and high mesa structures has been proposed. An 8-channel, 100-GHz-spacing silica arrayed-waveguide grating was fabricated, and its size was reduced dramatically to 1/4 of that of a conventional device.

  • Fault-Tolerance for the Mobile Ad-Hoc Environment

    Taesoon PARK  Kwangho KIM  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E91-A No:1
      Page(s):
    413-416

    Fault-tolerance is an important design issue in building a reliable mobile computing system. This paper considers checkpointing recovery services for a mobile computing system based on the ad-hoc network environment. Since potential problems of this new environment are insufficient power and limited storage capacity, the proposed scheme tries to reduce disk access frequency for saving recovery information, and also the amount of information saved for recovery. A brief simulation study has been performed and the results show that the proposed scheme takes advantage of the existing checkpointing recovery schemes.

  • Energy-Efficient Processing of Complex Queries over a Wireless Broadcast Data Stream

    Yon Dohn CHUNG  Chang-Sup PARK  

     
    PAPER-Database

      Vol:
    E91-D No:1
      Page(s):
    15-22

    Energy-efficiency is one of the main concerns in the wireless information dissemination system. This paper presents a wireless broadcast stream organization scheme which enables complex queries (e.g., aggregation queries) to be processed in an energy-efficient way. For efficient processing of complex queries, we propose an approach of broadcasting their pre-computed results with the data stream, wherein the way of replication of index and pre-computation results are investigated. Through analysis and experiments, we show that the new approach can achieve significant performance enhancement for complex queries with respect to the access time and tuning time.

  • A Multipath En-Route Filtering Method for Dropping Reports in Sensor Networks

    Mun Su KIM  Tae Ho CHO  

     
    LETTER-Networks

      Vol:
    E90-D No:12
      Page(s):
    2108-2109

    In this paper, we propose a multipath en-route filtering method to deal with the problems caused by black hole attacks and selective forwarding attacks. Our result shows that the method is more resilient to these problems up to a certain number of compromised nodes than the statistical en-route filtering scheme.

  • Proposal and Implementation Study of Forwarding Method for Urgent Messages on a Wireless Sensor Network

    Koichi ISHIBASHI  Kenichi TAKADA  Masatsugu YANO  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3402-3409

    Recent advances in wireless technologies and electronic devices have enabled the development of low-cost and large-scale wireless sensor networks. Many recent studies have targeted wireless sensor networks, but forwarding messages while satisfying both delay and reliability constraints remains an unsatisfied goal. Although most existing proposals aim at resiliency in multi-hop networks, improvement of network performance such as throughput and latency, and load balancing, supporting multiple forwarding strategies satisfying various demands is not discussed. We propose a forwarding method for messages with delay and reliability constraints on a single wireless sensor network. We evaluate message loss rate by using computer simulation and by implementing the proposed method on actual sensor nodes. Our results show that the proposed method achieves lower message loss rate for messages with delay and reliability constraints than that for best-efforts messages on a network with error-prone wireless links.

  • Dual Priority Scheduling Based on Power Adjustment Context Switching for Ubiquitous Sensor Network

    Dong-Sun KIM  Taeo HWANG  Seung-Yerl LEE  Kwang-Ho WON  Byung-Soo KIM  Seong-Dong KIM  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3419-3425

    The Ubiquitous sensor network (USN) node is required to operate for several months with limited system resources such as memory and power. The typical USN node is in the active state for less than 1% of its several month lifetime and waits in the inactive state for the remaining 99% of its lifetime. This paper suggests a power adjustment dual priority scheduler (PA-DPS) that offers low power consumption while meeting the USN requirements by estimating power consumption in the USN node. PA-DPS has been designed based on the event-driven approach and the dual-priority scheduling structure, which has been conventionally suggested in the real-time system field. From experimental results, PA-DPS reduced the inactive mode current up to 40% under the 1% duty cycle.

  • An Integrated Sleep-Scheduling and Routing Algorithm in Ubiquitous Sensor Networks Based on AHP

    Xiaoling WU  Jinsung CHO  Brian J. D'AURIOL  Sungyoung LEE  Young-Koo LEE  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3392-3401

    Ubiquitous sensor networks (USNs) are comprised of energy constrained nodes. This limitation has led to the crucial need for energy-aware protocols to produce an efficient network. We propose a sleep scheduling scheme for balancing energy consumption rates in a single hop cluster based network using Analytical Hierarchy Process (AHP). We consider three factors contributing to the optimal nodes scheduling decision and they are the distance to cluster head (CH), residual energy, and sensing coverage overlapping, respectively. We also propose an integrated sleep scheduling and geographical multi-path routing scheme for USNs by AHP. The sleep scheduling is redesigned to adapt the multi-hop case. For the proposed routing protocol, the distance to the destination location, remaining battery capacity, and queue size of candidate sensor nodes in the local communication range are taken into consideration for next hop relay node selection. The proposed schemes are observed to improve network lifetime and conserve energy without compromising desired coverage. In the multi-hop case, it can further reduce the packet loss rate and link failure rate since the buffer capacity is considered.

  • Optical Label Recognition Using Tree-Structure Self-Routing Circuits Consisting of Asymmetric X-Junctions

    Hitoshi HIURA  Jouji NARITA  Nobuo GOTO  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:12
      Page(s):
    2270-2277

    We propose a new label recognition system for photonic label routing network. Binary-coded labels in binary phase-shift-keying format are considered. The system consists of an optical waveguide circuit with tree-structure passive asymmetric X-junctions and time gates. The system uses self-routing propagation of an identifying bit by performing interference with address bits. The identifying bit is placed in advance of the address bits in the label. The identifying bit pulse is routed to the destination output port corresponding to the code of the address. The operation principle is described. It is shown that all the binary number codes can be recognized with this system. We discuss the feasibility of the system by evaluating its crosstalk. To reduce the crosstalk, an improved scheme is also presented. The label recognition operation with the optical waveguide device is verified by numerical simulation using the finite-difference beam propagation method.

  • Noise Robust Speaker Identification Using Sub-Band Weighting in Multi-Band Approach

    Sungtak KIM  Mikyong JI  Youngjoo SUH  Hoirin KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E90-D No:12
      Page(s):
    2110-2114

    Recently, many techniques have been proposed to improve speaker identification in noise environments. Among these techniques, we consider the feature recombination technique for the multi-band approach in noise robust speaker identification. The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional feature recombination technique does not provide notable performance improvement compared with the full-band system. Even though the speech is corrupted by the broad-band noise, the degree of the noise corruption on each sub-band is different from each other. In the conventional feature recombination for speaker identification, all sub-band features are used to compute multi-band likelihood score, but this likelihood computation does not use a merit of multi-band approach effectively, even though the sub-band features are extracted independently. Here we propose a new technique of sub-band likelihood computation with sub-band weighting in the feature recombination method. The signal to noise ratio (SNR) is used to compute the sub-band weights. The proposed sub-band-weighted likelihood computation makes a speaker identification system more robust to noise. Experimental results show that the average error reduction rate (ERR) in various noise environments is more than 24% compared with the conventional feature recombination-based speaker identification system.

  • QoS-Aware Geographic Routing for Solar-Powered Wireless Sensor Networks

    Donggeon NOH  Dongeun LEE  Heonshik SHIN  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3373-3382

    Rapid advances in wireless sensor networks require routing protocols which can accommodate new types of power source and data of differing priorities. We describe a QoS-aware geographic routing scheme based on a solar-cell energy model. It exploits an algorithm (APOLLO) that periodically and locally determines the topological knowledge range (KR) of each node, based on an estimated energy budget for the following period which includes the current energy, the predicted energy consumption, and the energy expected from the solar cell. A second algorithm (PISA) runs on each node and uses its knowledge range to determine a route which meets the objectives of each priority level in terms of path delay, energy consumption and reliability. These algorithms maximize scalability and minimize memory requirements by employing a localized routing method which only uses geographic information about the host node and its adjacent neighbors. Simulation results confirm that APOLLO can determine an appropriate KR for each node and that PISA can meet the objectives of each priority level effectively.

  • Lifetime Prediction Routing Protocol for Wireless Sensor Networks

    Minho SEO  Wonik CHOI  Yoo-Sung KIM  Jaehyun PARK  

     
    LETTER-Network

      Vol:
    E90-B No:12
      Page(s):
    3680-3681

    We propose LPDD (Lifetime Prediction Directed Diffusion), a novel energy-aware routing protocol for sensor networks that aims at increasing network survivability without a significant increase in latency. The key concept behind the protocol is the adaptive selection of routes by predicting the battery lifetime of the minimum energy nodes along the routes.

  • A New Single Image Architecture for Distributed Computing Systems

    Min CHOI  Namgi KIM  Seungryoul MAENG  

     
    PAPER

      Vol:
    E90-B No:11
      Page(s):
    3034-3041

    In this paper, we describe a single system image (SSI) architecture for distributed systems. The SSI architecture is constructed through three components: single process space (SPS), process migration, and dynamic load balancing. These components attempt to share all available resources in the cluster among all executing processes, so that the distributed system operates like a single node with much more computing power. To this end, we first resolve broken pipe problems and bind errors on server socket in process migration. Second, we realize SPS based on block process identifier (PID) allocation. Finally, we design and implement a dynamic load balancing scheme. The dynamic load balancing scheme exploits our novel metric, effective tasks, to effectively distribute jobs to a large distributed system. The experimental results show that these three components present scalability, new functionality, and performance improvement in distributed systems.

  • A Novel Cooperation Method for Routing and Wavelength Assignment in Optical Burst Switched Networks

    Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:11
      Page(s):
    3108-3116

    In Optical Burst Switching (OBS) networks, one of the main problems is collision between bursts. Most of the previous collision avoidance algorithms divide the Routing and Wavelength Assignment (RWA) problem into two partial problems and treat them separately. This paper focuses on the collision avoidance problem in distributed OBS networks. Our proposal involves cooperation between the routing and the wavelength assignment tasks. The main idea is to classify each wavelength at an output link of a node as suited either to sending or to relaying data bursts. The wavelength most suitable for transmitting bursts changes along the transmission route. Thus, we introduced a novel index called the "Suitability Index" (SI). The SI is a priority index assigned to each pair of output link and wavelength, and its value represents the suitability of that pair for sending or relaying data bursts. The proposed method uses the SI for both routing selection and wavelength assignment. Simulation results show that the proposed method can reduce the burst loss probability, particularly for long distance transmissions. As a result, unfairness in the treatment of short hop and long hop bursts can be reduced.

  • An Enhanced Simple-Adaptive Link State Update Algorithm for QoS Routing

    Seung-Hyuk CHOI  Min Young CHUNG  Mijeong YANG  Taeil KIM  Jaehyung PARK  

     
    PAPER-Network

      Vol:
    E90-B No:11
      Page(s):
    3117-3123

    In order to find paths guaranteed by Quality of Service (QoS), the link state database (LSDB), containing QoS constraint information, and residing in routers, needs to be well managed. However, there is a trade-off between the exact reflection of the current link status and the update cost to calculate and maintain this data. In order to perfectly reflect the current link state, each router immediately notifies its neighbors whenever link state information changes. However, this may degrade the performance of the router. On the other hand, if current link state information is not updated routinely, route setup requests may be rejected because of the discrepancy between the current link state information and the previously updated link state information in the LSDB. Therefore, we need link state update (LSU) algorithms making it possible to appropriately update the LSDB. In addition, to facilitate implementation, they also should have low-complexity and must be adaptive under the variation of network conditions. In this paper, we propose an enhanced simple-adaptive (ESA) LSU algorithm, to reduce the generation of LSU messages while maintaining simplicity and adaptivity. The performance of this algorithm is compared with five existing algorithms by rigorous simulations. The comparision shows that the ESU algorithm can adapt to changes in network conditions and its performance is superior to existing LSU algorithms.

  • Stacked Rectangular Microstrip Antenna with a Shorting Plate for Dual Band (VICS/ETC) Operation in ITS

    Takafumi FUJIMOTO  Kazumasa TANAKA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:11
      Page(s):
    3307-3310

    A stacked rectangular microstrip antenna with a shorting plate is proposed as a car antenna for dual band (VICS and ETC) operation in the ITS. The proposed antenna has the proper radiation patterns for the VICS and ETC. The antenna is small in size and effective in dual band operation.

  • Pilot-Aided Frequency Offset Estimation for Digital Video Broadcasting Systems

    Kyung-Taek LEE  Jong-Soo SEO  

     
    LETTER-Broadcast Systems

      Vol:
    E90-B No:11
      Page(s):
    3327-3329

    This letter introduces a simple way of estimating the integer frequency offset (IFO) of OFDM-based digital video broadcasting (DVB) systems. By modifying the conventional maximum likelihood (ML) estimator to include the multi-stage estimation strategy, the IFO estimator is derived. Simulations indicate that the proposed IFO estimator works robustly when compared to ML estimator.

  • A New Framework for Constructing Accurate Affine Invariant Regions

    Li TIAN  Sei-ichiro KAMATA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:11
      Page(s):
    1831-1840

    In this study, we propose a simple, yet general and powerful framework for constructing accurate affine invariant regions. In our framework, a method for extracting reliable seed points is first proposed. Then, regions which are invariant to most common affine transformations can be extracted from seed points by two new methods the Path Growing (PG) or the Thresholding Seeded Growing Region (TSGR). After that, an improved ellipse fitting method based on the Direct Least Square Fitting (DLSF) is used to fit the irregularly-shaped contours from the PG or the TSGR to obtain ellipse regions as the final invariant regions. In the experiments, our framework is first evaluated by the criterions of Mikolajczyk's evaluation framework [1], and then by near-duplicate detection problem [2]. Our framework shows its superiorities to the other detectors for different transformed images under Mikolajczyk's evaluation framework and the one with TSGR also gives satisfying results in the application to near-duplicate detection problem.

1801-1820hit(3578hit)