The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

1781-1800hit(3578hit)

  • Design for Testability Method to Avoid Error Masking of Software-Based Self-Test for Processors

    Masato NAKAZATO  Michiko INOUE  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-High-Level Testing

      Vol:
    E91-D No:3
      Page(s):
    763-770

    In this paper, we propose a design for testability method for test programs of software-based self-test using test program templates. Software-based self-test using templates has a problem of error masking where some faults detected in a test generation for a module are not detected by the test program synthesized from the test. The proposed method achieves 100% template level fault efficiency, that is, it completely avoids the error masking. Moreover, the proposed method has no performance degradation (adds only observation points) and enables at-speed testing.

  • Accurate Bit-Error Rate Evaluation for TH-PPM Systems in Nakagami Fading Channels Using Moment Generating Functions

    Bin LIANG  Erry GUNAWAN  Choi Look LAW  Kah Chan TEH  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    922-926

    Analytical expressions based on the Gauss-Chebyshev quadrature (GCQ) rule technique are derived to evaluate the bit-error rate (BER) for the time-hopping pulse position modulation (TH-PPM) ultra-wide band (UWB) systems under a Nakagami-m fading channel. The analyses are validated by the simulation results and adopted to assess the accuracy of the commonly used Gaussian approximation (GA) method. The influence of the fading severity on the BER performance of TH-PPM UWB system is investigated.

  • A Checkpointing Method with Small Checkpoint Latency

    Masato KITAKAMI  Bochuan CAI  Hideo ITO  

     
    LETTER-Dependable Computing

      Vol:
    E91-D No:3
      Page(s):
    857-861

    The cost of checkpointing consists of checkpoint overhead and checkpoint latency. The former is the time to stop the process for checkpointing. The latter is the time to complete the checkpointing including background checkpointing which stores memory pages. The large checkpoint latency increases the possibility that the error occurs in background checkpointing, which leads to long rollback distance. The method for small checkpoint latency has not been proposed yet. This paper proposes a checkpointing method which achieves small checkpoint latency. The proposed method divides a checkpoint interval into several subcheckpoint intervals. By using the history of memory page modification in subcheckpoint intervals, the proposed method saves some pages which are not expected to be modified in the rest of checkpoint interval in advance. Computer simulation says that the proposed method can reduce the checkpoint latency by 25% comparing to the existing methods.

  • Scheduling Power-Constrained Tests through the SoC Functional Bus

    Fawnizu Azmadi HUSSIN  Tomokazu YONEDA  Alex ORAILOLU  Hideo FUJIWARA  

     
    PAPER-High-Level Testing

      Vol:
    E91-D No:3
      Page(s):
    736-746

    This paper proposes a test methodology for core-based testing of System-on-Chips by utilizing the functional bus as a test access mechanism. The functional bus is used as a transportation channel for the test stimuli and responses from a tester to the cores under test (CUT). To enable test concurrency, local test buffers are added to all CUTs. In order to limit the buffer area overhead while minimizing the test application time, we propose a packet-based scheduling algorithm called PAcket Set Scheduling (PASS), which finds the complete packet delivery schedule under a given power constraint. The utilization of test packets, consisting of a small number of bits of test data, for test data delivery allow an efficient sharing of bus bandwidth with the help of an effective buffer-based test architecture. The experimental results show that the methodology is highly effective, especially for smaller bus widths, compared to previous approaches that do not use the functional bus.

  • An XQDD-Based Verification Method for Quantum Circuits

    Shiou-An WANG  Chin-Yung LU  I-Ming TSAI  Sy-Yen KUO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:2
      Page(s):
    584-594

    Synthesis of quantum circuits is essential for building quantum computers. It is important to verify that the circuits designed perform the correct functions. In this paper, we propose an algorithm which can be used to verify the quantum circuits synthesized by any method. The proposed algorithm is based on BDD (Binary Decision Diagram) and is called X-decomposition Quantum Decision Diagram (XQDD). In this method, quantum operations are modeled using a graphic method and the verification process is based on comparing these graphic diagrams. We also develop an algorithm to verify reversible circuits even if they have a different number of garbage qubits. In most cases, the number of nodes used in XQDD is less than that in other representations. In general, the proposed method is more efficient in terms of space and time and can be used to verify many quantum circuits in polynomial time.

  • Analysis of Second-Order Modes of Linear Continuous-Time Systems under Positive-Real Transformations

    Shunsuke KOSHITA  Yousuke MIZUKAMI  Taketo KONNO  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:2
      Page(s):
    575-583

    This paper discusses the behavior of the second-order modes (Hankel singular values) of linear continuous-time systems under variable transformations with positive-real functions. That is, given a transfer function H(s) and its second-order modes, we analyze the second-order modes of transformed systems H(F(s)), where 1/F(s) is an arbitrary positive-real function. We first discuss the case of lossless positive-real transformations, and show that the second-order modes are invariant under any lossless positive-real transformation. We next consider the case of general positive-real transformations, and reveal that the values of the second-order modes are decreased under any general positive-real transformation. We achieve the derivation of these results by describing the controllability/observability Gramians of transformed systems, with the help of the lossless positive-real lemma, the positive-real lemma, and state-space formulation of transformed systems.

  • Multiple Tree Multicast Ad Hoc On-Demand Distance Vector (MT-MAODV) Routing Protocol for Video Multicast over Mobile Ad Hoc Networks

    Chee-Onn CHOW  Hiroshi ISHII  

     
    PAPER-Network

      Vol:
    E91-B No:2
      Page(s):
    428-436

    Video multicast over wireless medium has gained increasing popularity in a wide range of applications, such as video-on-demand and group video conferencing. With mobile ad hoc networks emerging as a promising solution for future ubiquitous communications, supporting reliable video multicast over mobile ad hoc networks is a timely research topic. In this paper we tackle this issue by using multiple tree multicast routing protocol. Specifically, we introduce an extension to the Multicast Ad Hoc On-demand Distance Vector (MAODV) routing protocol to construct two optimally disjoint trees in a single routine. The extended protocol is called Multiple Tree Multicast Ad Hoc On-demand Distance Vector (MT-MAODV) routing protocol. In order to distribute the video evenly and independently between these disjoint trees, the Multiple Description Coding (MDC) scheme is used for video coding. Simulation shows that the proposed protocol demonstrates video multicast with better quality than the conventional video multicast using a single tree only.

  • Monolithic Integration of III-V Active Devices into Silicon Platform for Optoelectronic Integrated Circuits

    Yuzo FURUKAWA  Hiroo YONEZU  Akihiro WAKAHARA  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    145-149

    Structural defect-free GaPN and InGaPN layers were grown on a Si (100) substrate. Light emitting diodes (LEDs) and Si metal-oxide-semiconductor field effect transistors (MOSFETs), which are elemental devices for optoelectronic integrated circuits(OEICs), were monolithically integrated in a single chip with a Si layer and an InGaPN/GaPN double hetereostructure layer grown on a Si substrate. The developed process flow was based on a conventional MOSFET process flow. It was confirmed that light emission from the LED was modulated by switching the MOSFET. The growth and fabrication process technologies are effective in the realization of monolithic OEICs.

  • Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Andrew W. POON  Linjie ZHOU  Fang XU  Chao LI  Hui CHEN  Tak-Keung LIANG  Yang LIU  Hon K. TSANG  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    156-166

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas--microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  • Frame Splitting Scheme for Error-Robust Audio Streaming over Packet-Switching Networks

    Jong Kyu KIM  Jung Su KIM  Hwan Sik YUN  Joon-Hyuk CHANG  Nam Soo KIM  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:2
      Page(s):
    677-680

    This letter presents a novel frame splitting scheme for an error-robust audio streaming over packet-switching networks. In our approach to perceptual audio coding, an audio frame is split into several subframes based on the network configuration such that each packet can be decoded independently at the receiver. Through a subjective comparison category rating (CCR) test, it is discovered that our approach enhances the quality of the decoded audio signal under the lossy packet-switching networks environment.

  • Reflection-Based Deflection Routing in OPS Networks

    Masayuki MORITA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:2
      Page(s):
    409-417

    An important issue in the realization of optical packet-switched (OPS) networks is the resolution of packet contention caused by the lack of RAM-like optical buffering. Although an optical buffer using fiber delay lines (FDLs) has been proposed, its capacity is extremely limited. There have been several studies of this problem. One approach is deflection routing, which is widely used in electronic packet-switched networks or optical burst-switched (OBS) networks. However, in OPS networks, packet lengths are short, so that the speed requirement for route lookup is very stringent. If the network topology is geometric, such as a Manhattan Street Network (MSN), hop-by-hop routing can be implemented by simple optical logic devices without an electronic routing table. However, if the topology is not geometric, it is hard to implement deflection routing electronically or optically. Another approach is reflection routing, which is easy to implement but has a higher probability of packet loss than does deflection routing. In this paper, we propose a packet contention resolution scheme, reflection-based deflection routing, which is based on reflection routing and enables switching the reflected packet to an alternate path if its primary path remains congested. Our method alleviates the time limitation on setting an alternate path by making use of the packet reflection latency and also reduces the probability of packet loss. We evaluate the performance of the proposed method by simulation experiments and show its effectiveness.

  • An Enhanced Route Recovery Protocol for Mobile Ad Hoc Networks

    Sangkyung KIM  Noyeul PARK  Changhwa KIM  Seung-sik CHOI  

     
    LETTER-Network

      Vol:
    E91-B No:2
      Page(s):
    597-600

    In case of link failures, many ad hoc routing protocols recover a route by employing source-initiated route re-discovery, but this approach can degrade system performance. Some use localized route recovery, which may yield non-optimal paths. Our proposal provides a mechanism that can enhance the overall routing performance by initiating route recovery at the destination node. We elucidate the effects through simulations including comparisons with AODV and AODV with local repair.

  • Image Restoration for Quantifying TFT-LCD Defect Levels

    Kyu Nam CHOI  No Kap PARK  Suk In YOO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:2
      Page(s):
    322-329

    Though machine vision systems for automatically detecting visual defects, called mura, have been developed for thin flat transistor liquid crystal display (TFT-LCD) panels, they have not yet reached a level of reliability which can replace human inspectors. To establish an objective criterion for identifying real defects, some index functions for quantifying defect levels based on human perception have been recently researched. However, while these functions have been verified in the laboratory, further consideration is needed in order to apply them to real systems in the field. To begin with, we should correct the distortion occurring through the capturing of panels. Distortion can cause the defect level in the observed image to differ from that in the panel. There are several known methods to restore the observed image in general vision systems. However, TFT-LCD panel images have a unique background degradation composed of background non-uniformity and vignetting effect which cannot easily be restored through traditional methods. Therefore, in this paper we present a new method to correct background degradation of TFT-LCD panel images using principal component analysis (PCA). Experimental results show that our method properly restores the given observed images and the transformed shape of muras closely approaches the original undistorted shape.

  • CombNET-III with Nonlinear Gating Network and Its Application in Large-Scale Classification Problems

    Mauricio KUGLER  Susumu KUROYANAGI  Anto Satriyo NUGROHO  Akira IWATA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:2
      Page(s):
    286-295

    Modern applications of pattern recognition generate very large amounts of data, which require large computational effort to process. However, the majority of the methods intended for large-scale problems aim to merely adapt standard classification methods without considering if those algorithms are appropriated for large-scale problems. CombNET-II was one of the first methods specifically proposed for such kind of a task. Recently, an extension of this model, named CombNET-III, was proposed. The main modifications over the previous model was the substitution of the expert networks by Support Vectors Machines (SVM) and the development of a general probabilistic framework. Although the previous model's performance and flexibility were improved, the low accuracy of the gating network was still compromising CombNET-III's classification results. In addition, due to the use of SVM based experts, the computational complexity is higher than CombNET-II. This paper proposes a new two-layered gating network structure that reduces the compromise between number of clusters and accuracy, increasing the model's performance with only a small complexity increase. This high-accuracy gating network also enables the removal the low confidence expert networks from the decoding procedure. This, in addition to a new faster strategy for calculating multiclass SVM outputs significantly reduced the computational complexity. Experimental results of problems with large number of categories show that the proposed model outperforms the original CombNET-III, while presenting a computational complexity more than one order of magnitude smaller. Moreover, when applied to a database with a large number of samples, it outperformed all compared methods, confirming the proposed model's flexibility.

  • Discrete Modelling of Continuous-Time Systems Having Interval Uncertainties Using Genetic Algorithms

    Chen-Chien HSU  Tsung-Chi LU  Heng-Chou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:1
      Page(s):
    357-364

    In this paper, an evolutionary approach is proposed to obtain a discrete-time state-space interval model for uncertain continuous-time systems having interval uncertainties. Based on a worst-case analysis, the problem to derive the discrete interval model is first formulated as multiple mono-objective optimization problems for matrix-value functions associated with the discrete system matrices, and subsequently optimized via a proposed genetic algorithm (GA) to obtain the lower and upper bounds of the entries in the system matrices. To show the effectiveness of the proposed approach, roots clustering of the characteristic equation of the obtained discrete interval model is illustrated for comparison with those obtained via existing methods.

  • Overlap Degree Aware Routing in All-Optical Routing Networks

    Takehiko MATSUMOTO  Toyofumi TAKENAKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:1
      Page(s):
    212-220

    Dynamic routing and wavelength assignment (RWA) is an attractive method for the efficient use of network resources in all-optical networks. We present a novel fixed alternate routing method referred to as Overlap-Degree Aware (ODA) routing in all-optical networks. A lot of researchers have focused on the shortest path routing and alternate shortest path routing taking into acount link and wavelength usage so as to reduce the consumption of network resources. The authors, however, believe that in order to minimize the blocking probability, it is important to consider not only the consumption of link and wavelength resources but also the existence of the other flows when a routing decision is made. The ODA routing decides routes using the knowledge of ingress-egress node pairs, and tries to prevent future path requests from being blocked unnecessarily by reserving link and wavelength resources for the future requests. Our simulation results show that our new routing algorithm outperforms Fixed-Alternate Routing (FAR) and Weighted Least Congestion Routing (WLCR) from the viewpoint of call blocking probability.

  • Making Cryptographic Primitives Harder

    Shingo HASEGAWA  Hiroyuki HATANAKA  Shuji ISOBE  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER-Cryptanalysis

      Vol:
    E91-A No:1
      Page(s):
    330-337

    This paper studies a method for transforming ordinary cryptographic primitives to new harder primitives. Such a method is expected to lead to general schemes that make present cryptosystems secure against the attack of quantum computers. We propose a general technique to construct a new function from an ordinary primitive function f with a help of another hard function g so that the resulting function is to be new hard primitives. We call this technique a lifting of f by g. We show that the lifted function is harder than original functions under some simple conditions.

  • Novel Fiber Endface Preparation Tool for Optical Fiber Joints Employing Thermal Surface Cleaning and Thermal Endface Cutting

    Noriyoshi MATSUMOTO  Kazuo HOGARI  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E91-B No:1
      Page(s):
    207-211

    This paper proposes a novel fiber endface preparation tool for optical fiber joints that employs thermal surface cleaning and thermal endface cutting. This tool has great advantages in terms of fiber endface preparation time, and fiber endface stability when fiber is cut repeatedly. Stable thermal surface cleaning and thermal endface cutting are achieved by selecting suitable heating conditions. The fiber endface preparation time can be reduced to 50% of that required with conventional tools. The fiber endface stability obtained using thermal cutting is more than five times better than that obtained with the conventional tool using a blade.

  • Scattering of TM Plane Wave from Periodic Grating with Single Defect

    Kazuhiro HATTORI  Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E91-C No:1
      Page(s):
    17-25

    This paper deals with the scattering of a TM plane wave from a periodic grating with single defect, of which position is known. The surface is perfectly conductive and made up with a periodic array of rectangular grooves and a defect where a groove is not formed. The scattered wave above grooves is written as a variation from the diffracted wave for the perfectly periodic case. Then, an integral equation for the scattering amplitude is obtained, which is solved numerically by use of truncation and the iteration method. The differential scattering cross section and the optical theorem are calculated in terms of the scattering amplitude and are illustrated in figures. It is found that incoherent Wood's anomaly appears at critical angles of scattering. The physical mechanisms of Wood's anomaly and incoherent Wood's anomaly are discussed in relation to the guided surface wave excited by the incident plane wave. It is concluded that incoherent Wood's anomaly is caused by the diffraction of the guided surface wave.

  • Segmentation of On-Line Freely Written Japanese Text Using SVM for Improving Text Recognition

    Bilan ZHU  Masaki NAKAGAWA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:1
      Page(s):
    105-113

    This paper describes a method of producing segmentation point candidates for on-line handwritten Japanese text by a support vector machine (SVM) to improve text recognition. This method extracts multi-dimensional features from on-line strokes of handwritten text and applies the SVM to the extracted features to produces segmentation point candidates. We incorporate the method into the segmentation by recognition scheme based on a stochastic model which evaluates the likelihood composed of character pattern structure, character segmentation, character recognition and context to finally determine segmentation points and recognize handwritten Japanese text. This paper also shows the details of generating segmentation point candidates in order to achieve high discrimination rate by finding the optimal combination of the segmentation threshold and the concatenation threshold. We compare the method for segmentation by the SVM with that by a neural network (NN) using the database HANDS-Kondate_t_bf-2001-11 and show the result that the method by the SVM bring about a better segmentation rate and character recognition rate.

1781-1800hit(3578hit)