The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] transformation(181hit)

1-20hit(181hit)

  • A Computer Simulation Study on Movement Control by Functional Electrical Stimulation Using Optimal Control Technique with Simplified Parameter Estimation

    Fauzan ARROFIQI  Takashi WATANABE  Achmad ARIFIN  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2023/02/21
      Vol:
    E106-D No:5
      Page(s):
    1059-1068

    The purpose of this study was to develop a practical functional electrical stimulation (FES) controller for joint movements restoration based on an optimal control technique by cascading a linear model predictive control (MPC) and a nonlinear transformation. The cascading configuration was aimed to obtain an FES controller that is able to deal with a nonlinear system. The nonlinear transformation was utilized to transform the linear solution of linear MPC to become a nonlinear solution in form of optimized electrical stimulation intensity. Four different types of nonlinear functions were used to realize the nonlinear transformation. A simple parameter estimation to determine the value of the nonlinear transformation parameter was also developed. The tracking control capability of the proposed controller along with the parameter estimation was examined in controlling the 1-DOF wrist joint movement through computer simulation. The proposed controller was also compared with a fuzzy FES controller. The proposed MPC-FES controller with estimated parameter value worked properly and had a better control accuracy than the fuzzy controller. The parameter estimation was suggested to be useful and effective in practical FES control applications to reduce the time-consuming of determining the parameter value of the proposed controller.

  • New Performance Evaluation Method for Data Embedding Techniques for Printed Images Using Mobile Devices Based on a GAN

    Masahiro YASUDA  Soh YOSHIDA  Mitsuji MUNEYASU  

     
    LETTER

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:3
      Page(s):
    481-485

    Methods that embed data into printed images and retrieve data from printed images captured using the camera of a mobile device have been proposed. Evaluating these methods requires printing and capturing actual embedded images, which is burdensome. In this paper, we propose a method for reducing the workload for evaluating the performance of data embedding algorithms by simulating the degradation caused by printing and capturing images using generative adversarial networks. The proposed method can represent various captured conditions. Experimental results demonstrate that the proposed method achieves the same accuracy as detecting embedded data under actual conditions.

  • A Subclass of Mu-Calculus with the Freeze Quantifier Equivalent to Register Automata

    Yoshiaki TAKATA  Akira ONISHI  Ryoma SENDA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:3
      Page(s):
    294-302

    Register automaton (RA) is an extension of finite automaton by adding registers storing data values. RA has good properties such as the decidability of the membership and emptiness problems. Linear temporal logic with the freeze quantifier (LTL↓) proposed by Demri and Lazić is a counterpart of RA. However, the expressive power of LTL↓ is too high to be applied to automatic verification. In this paper, we propose a subclass of modal µ-calculus with the freeze quantifier, which has the same expressive power as RA. Since a conjunction ψ1 ∧ ψ2 in a general LTL↓ formula cannot be simulated by RA, the proposed subclass prohibits at least one of ψ1 and ψ2 from containing the freeze quantifier or a temporal operator other than X (next). Since the obtained subclass of LTL↓ does not have the ability to represent a cycle in RA, we adopt µ-calculus over the subclass of LTL↓, which allows recursive definition of temporal formulas. We provide equivalent translations from the proposed subclass of µ-calculus to RA and vice versa and prove their correctness.

  • Adversarial Example Detection Based on Improved GhostBusters

    Hyunghoon KIM  Jiwoo SHIN  Hyo Jin JO  

     
    LETTER

      Pubricized:
    2022/04/19
      Vol:
    E105-D No:11
      Page(s):
    1921-1922

    In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBusters that detects phantom attacks. The proposed model uses a new feature, i.e, frequency of images. Experimental results show that F-GhostBusters not only improves the detection performance of GhostBusters but also can complement the accuracy against adversarial examples.

  • A Large-Scale SCMA Codebook Optimization and Codeword Allocation Method

    Shiqing QIAN  Wenping GE  Yongxing ZHANG  Pengju ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    788-796

    Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.

  • Industry 4.0 Based Business Process Re-Engineering Framework for Manufacturing Industry Setup Incorporating Evolutionary Multi-Objective Optimization

    Anum TARIQ  Shoab AHMED KHAN  

     
    PAPER-Software Engineering

      Pubricized:
    2022/04/08
      Vol:
    E105-D No:7
      Page(s):
    1283-1295

    Manufacturers are coping with increasing pressures in quality, cost and efficiency as more and more industries are moving from traditional setup to industry 4.0 based digitally transformed setup due to its numerous playbacks. Within the manufacturing domain organizational structures and processes are complex, therefore adopting industry 4.0 and finding an optimized re-engineered business process is difficult without using a systematic methodology. Authors have developed Business Process Re-engineering (BPR) and Business Process Optimization (BPO) methods but no consolidated methodology have been seen in the literature that is based on industry 4.0 and incorporates both the BPR and BPO. We have presented a consolidated and systematic re-engineering and optimization framework for a manufacturing industry setup. The proposed framework performs Evolutionary Multi-Objective Combinatorial Optimization using Multi-Objective Genetic Algorithm (MOGA). An example process from an aircraft manufacturing factory has been optimized and re-engineered with available set of technologies from industry 4.0 based on the criteria of lower cost, reduced processing time and reduced error rate. At the end to validate the proposed framework Business Process Model and Notation (BPMN) is used for simulations and perform comparison between AS-IS and TO-BE processes as it is widely used standard for business process specification. The proposed framework will be used in converting an industry from traditional setup to industry 4.0 resulting in cost reduction, increased performance and quality.

  • A Study on Cognitive Transformation in the Process of Acquiring Movement Skills for Changing Running Direction

    Masatoshi YAMADA  Masaki OHATA  Daisuke KAKOI  

     
    PAPER

      Pubricized:
    2021/11/11
      Vol:
    E105-D No:3
      Page(s):
    565-577

    In ball games, acquiring skills to change the direction becomes necessary. For revealing the mechanism of skill acquisition in terms of the relevant field, it would be necessary to take an approach regarding players' cognition as well as body movements measurable from outside. In the phase of change-of-direction performance that this study focuses on, cognitive factors including the prediction of opposite players' movements and judgements of the situation have significance. The purpose of this study was to reveal cognitive transformation in the skill acquisition process for change-of-direction performance. The survey was conducted for three months from August 29 to November 28, 2020, and those surveyed were seven university freshmen belonging to women's basketball club of M University. The way to analyze verbal reports collected in order to explore the changes in the players' cognition is described in Sect.2. In Sect.3, we made a plot graph showing temporal changes in respective factors based on coding outcomes for verbal reports. Consequently, as cognitive transformation in the skill acquisition process for change-of-direction performance, four items such as (1) goal setting for skill acquisition, (2) experience of change in running direction, (3) experience of speed and acceleration, and (4) experience of the movement of lower extremities such as legs and hip joints were suggested as common cognitive transformation. In addition, cognitive transformation varied by the degree of skill acquisition for change-of-direction performance. It was indicated that paying too much attention to body feelings including the position of and shift in the center of gravity in the body posed an obstacle to the skill acquisition for change-of-direction performance.

  • Sketch Face Recognition via Cascaded Transformation Generation Network

    Lin CAO  Xibao HUO  Yanan GUO  Kangning DU  

     
    PAPER-Image

      Pubricized:
    2021/04/01
      Vol:
    E104-A No:10
      Page(s):
    1403-1415

    Sketch face recognition refers to matching photos with sketches, which has effectively been used in various applications ranging from law enforcement agencies to digital entertainment. However, due to the large modality gap between photos and sketches, sketch face recognition remains a challenging task at present. To reduce the domain gap between the sketches and photos, this paper proposes a cascaded transformation generation network for cross-modality image generation and sketch face recognition simultaneously. The proposed cascaded transformation generation network is composed of a generation module, a cascaded feature transformation module, and a classifier module. The generation module aims to generate a high quality cross-modality image, the cascaded feature transformation module extracts high-level semantic features for generation and recognition simultaneously, the classifier module is used to complete sketch face recognition. The proposed transformation generation network is trained in an end-to-end manner, it strengthens the recognition accuracy by the generated images. The recognition performance is verified on the UoM-SGFSv2, e-PRIP, and CUFSF datasets; experimental results show that the proposed method is better than other state-of-the-art methods.

  • An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method

    Yu SONG  Xu QIAO  Yutaro IWAMOTO  Yen-Wei CHEN  Yili CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/05/14
      Vol:
    E104-D No:8
      Page(s):
    1359-1366

    Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).

  • Privacy-Preserving Support Vector Machine Computing Using Random Unitary Transformation

    Takahiro MAEKAWA  Ayana KAWAMURA  Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1849-1855

    A privacy-preserving support vector machine (SVM) computing scheme is proposed in this paper. Cloud computing has been spreading in many fields. However, the cloud computing has some serious issues for end users, such as the unauthorized use of cloud services, data leaks, and privacy being compromised. Accordingly, we consider privacy-preserving SVM computing. We focus on protecting visual information of images by using a random unitary transformation. Some properties of the protected images are discussed. The proposed scheme enables us not only to protect images, but also to have the same performance as that of unprotected images even when using typical kernel functions such as the linear kernel, radial basis function (RBF) kernel and polynomial kernel. Moreover, it can be directly carried out by using well-known SVM algorithms, without preparing any algorithms specialized for secure SVM computing. In an experiment, the proposed scheme is applied to a face-based authentication algorithm with SVM classifiers to confirm the effectiveness.

  • New Classes of Efficient MDS Transformations

    Yubo LI  Kangquan LI  Longjiang QU  Chao LI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:11
      Page(s):
    1504-1511

    MDS transformation plays an important role in resisting against differential cryptanalysis (DC) and linear cryptanalysis (LC). Recently, M. Sajadieh, et al.[15] designed an efficient recursive diffusion layer with Feistel-like structures. Moreover, they obtained an MDS transformation which is related to a linear function and the inverse is as lightweight as itself. Based on this work, we consider one specific form of linear functions to get the diffusion layer with low XOR gates for the hardware implementation by using temporary registers. We give two criteria to reduce the construction space and obtain six new classes of lightweight MDS transformations. Some of our constructions with one bundle-based LFSRs have as low XOR gates as previous best known results. We expect that these results may supply more choices for the design of MDS transformations in the (lightweight) block cipher algorithm.

  • Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score

    Yoichi SASAKI  Tetsuo SHIBUYA  Kimihito ITO  Hiroki ARIMURA  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1159-1170

    In this paper, we study the approximate point set matching (APSM) problem with minimum RMSD score under translation, rotation, and one-to-one correspondence in d-dimension. Since most of the previous works about APSM problems use similality scores that do not especially care about one-to-one correspondence between points, such as Hausdorff distance, we cannot easily apply previously proposed methods to our APSM problem. So, we focus on speed-up of exhaustive search algorithms that can find all approximate matches. First, we present an efficient branch-and-bound algorithm using a novel lower bound function of the minimum RMSD score for the enumeration version of APSM problem. Then, we modify this algorithm for the optimization version. Next, we present another algorithm that runs fast with high probability when a set of parameters are fixed. Experimental results on both synthetic datasets and real 3-D molecular datasets showed that our branch-and-bound algorithm achieved significant speed-up over the naive algorithm still keeping the advantage of generating all answers.

  • Generation of Efficient Obfuscated Code through Just-in-Time Compilation

    Muhammad HATABA  Ahmed EL-MAHDY  Kazunori UEDA  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/11/22
      Vol:
    E102-D No:3
      Page(s):
    645-649

    Nowadays the computing technology is going through a major paradigm shift. Local processing platforms are being replaced by physically out of reach yet more powerful and scalable environments such as the cloud computing platforms. Previously, we introduced the OJIT system as a novel approach for obfuscating remotely executed programs, making them difficult for adversaries to reverse-engineer. The system exploited the JIT compilation technology to randomly and dynamically transform the code, making it constantly changing, thereby complicating the execution state. This work aims to propose the new design iOJIT, as an enhanced approach that patches the old systems shortcomings, and potentially provides more effective obfuscation. Here, we present an analytic study of the obfuscation techniques on the generated code and the cost of applying such transformations in terms of execution time and performance overhead. Based upon this profiling study, we implemented a new algorithm to choose which obfuscation techniques would be better chosen for “efficient” obfuscation according to our metrics, i.e., less prone to security attacks. Another goal was to study the system performance with different applications. Therefore, we applied our system on a cloud platform running different standard benchmarks from SPEC suite.

  • Rectifying Transformation Networks for Transformation-Invariant Representations with Power Law

    Chunxiao FAN  Yang LI  Lei TIAN  Yong LI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/12/04
      Vol:
    E102-D No:3
      Page(s):
    675-679

    This letter proposes a representation learning framework of convolutional neural networks (Convnets) that aims to rectify and improve the feature representations learned by existing transformation-invariant methods. The existing methods usually encode feature representations invariant to a wide range of spatial transformations by augmenting input images or transforming intermediate layers. Unfortunately, simply transforming the intermediate feature maps may lead to unpredictable representations that are ineffective in describing the transformed features of the inputs. The reason is that the operations of convolution and geometric transformation are not exchangeable in most cases and so exchanging the two operations will yield the transformation error. The error may potentially harm the performance of the classification networks. Motivated by the fractal statistics of natural images, this letter proposes a rectifying transformation operator to minimize the error. The proposed method is differentiable and can be inserted into the convolutional architecture without making any modification to the optimization algorithm. We show that the rectified feature representations result in better classification performance on two benchmarks.

  • On Searching Linear Transformations for the Register R of MICKEY-Family Ciphers

    Lin WANG  Ying GAO  Yu ZHOU  Xiaoni DU  

     
    LETTER

      Vol:
    E101-A No:9
      Page(s):
    1546-1547

    MICKEY-family ciphers are lightweight cryptographic primitives and include a register R determined by two related maximal-period linear transformations. Provided that primitivity is efficiently decided in finite fields, it is shown by quantitative analysis that potential parameters for R can be found in probabilistic polynomial time.

  • An Efficient Misalignment Method for Visual Tracking Based on Sparse Representation

    Shan JIANG  Cheng HAN  Xiaoqiang DI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2123-2131

    Sparse representation has been widely applied to visual tracking for several years. In the sparse representation framework, tracking problem is transferred into solving an L1 minimization issue. However, during the tracking procedure, the appearance of target was affected by external environment. Therefore, we proposed a robust tracking algorithm based on the traditional sparse representation jointly particle filter framework. First, we obtained the observation image set from particle filter. Furthermore, we introduced a 2D transformation on the observation image set, which enables the tracking target candidates set more robust to handle misalignment problem in complex scene. Moreover, we adopt the occlusion detection mechanism before template updating, reducing the drift problem effectively. Experimental evaluations on five public challenging sequences, which exhibit occlusions, illuminating variations, scale changes, motion blur, and our tracker demonstrate accuracy and robustness in comparisons with the state-of-the-arts.

  • Tree-Based Feature Transformation for Purchase Behavior Prediction

    Chunyan HOU  Chen CHEN  Jinsong WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/02/02
      Vol:
    E101-D No:5
      Page(s):
    1441-1444

    In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.

  • Learning Supervised Feature Transformations on Zero Resources for Improved Acoustic Unit Discovery

    Michael HECK  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/10/20
      Vol:
    E101-D No:1
      Page(s):
    205-214

    In this work we utilize feature transformations that are common in supervised learning without having prior supervision, with the goal to improve Dirichlet process Gaussian mixture model (DPGMM) based acoustic unit discovery. The motivation of using such transformations is to create feature vectors that are more suitable for clustering. The need of labels for these methods makes it difficult to use them in a zero resource setting. To overcome this issue we utilize a first iteration of DPGMM clustering to generate frame based class labels for the target data. The labels serve as basis for learning linear discriminant analysis (LDA), maximum likelihood linear transform (MLLT) and feature-space maximum likelihood linear regression (fMLLR) based feature transformations. The novelty of our approach is the way how we use a traditional acoustic model training pipeline for supervised learning to estimate feature transformations in a zero resource scenario. We show that the learned transformations greatly support the DPGMM sampler in finding better clusters, according to the performance of the DPGMM posteriorgrams on the ABX sound class discriminability task. We also introduce a method for combining posteriorgram outputs of multiple clusterings and demonstrate that such combinations can further improve sound class discriminability.

  • Black-Box Separations on Fiat-Shamir-Type Signatures in the Non-Programmable Random Oracle Model

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    77-87

    In recent years, Fischlin and Fleischhacker showed the impossibility of proving the security of specific types of FS-type signatures, the signatures constructed by the Fiat-Shamir transformation, via a single-instance reduction in the non-programmable random oracle model (NPROM, for short). In this paper, we pose a question whether or not the impossibility of proving the security of any FS-type signature can be shown in the NPROM. For this question, we show that each FS-type signature cannot be proven to be secure via a key-preserving reduction in the NPROM from the security against the impersonation of the underlying identification scheme under the passive attack, as long as the identification scheme is secure against the impersonation under the active attack. We also show the security incompatibility between the security of some FS-type signatures in the NPROM via a single-instance key-preserving reduction and the underlying cryptographic assumptions. By applying this result to the Schnorr signature, one can prove the incompatibility between the security of the Schnorr signature in this situation and the discrete logarithm assumption, whereas Fischlin and Fleischhacker showed that such an incompatibility cannot be proven via a non-key-preserving reduction.

  • Hue-Preserving Color Image Processing with a High Arbitrariness in RGB Color Space

    Minako KAMIYAMA  Akira TAGUCHI  

     
    PAPER-Image Processing

      Vol:
    E100-A No:11
      Page(s):
    2256-2265

    Preserving hue is an important issue for color image processing. In order to preserve hue, color image processing is often carried out in HSI or HSV color space which is translated from RGB color space. Transforming from RGB color space to another color space and processing in this space usually generate gamut problem. We propose image enhancement methods which conserve hue and preserve the range (gamut) of the R, G, B channels in this paper. First we show an intensity processing method while preserving hue and saturation. In this method, arbitrary gray-scale transformation functions can be applied to the intensity component. Next, a saturation processing method while preserving hue and intensity is proposed. Arbitrary gray-scale transform methods can be also applied to the saturation component. Two processing methods are completely independent. Therefore, two methods are easily combined by applying two processing methods in succession. The combination method realizes the hue-preserving color image processing with a high arbitrariness without gamut problem. Furthermore, the concrete enhancement algorithm based on the proposed processing methods is proposed. Numerical results confirm our theoretical results and show that our processing algorithm performs much better than the conventional hue-preserving methods.

1-20hit(181hit)