The search functionality is under construction.

Keyword Search Result

[Keyword] wave absorber(23hit)

1-20hit(23hit)

  • Evaluation of Transmission Characteristics of 120-GHz-Band Close-Proximity Wireless Links Using Split-Ring-Resonator Absorber Integrated Planar Slot Antenna

    Akihiko HIRATA  Tubasa SAIJO  Yuma KAWAMOTO  Tadao NAGATSUMA  Issei WATANABE  Norihiko SEKINE  Akifumi KASAMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/09
      Vol:
    E106-C No:9
      Page(s):
    458-465

    We experimentally evaluated transmission characteristics of 120-GHz-band close-proximity wireless link that employs a split-ring resonator (SRR) millimeter-wave (MMW) absorber integrated on planar slot antennas in 120-GHz-band close-proximity wireless links. We fabricated the SRR MMW absorber made of a 0.28-μm-thick TaN film on a quartz substrate, and integrated it on planar single slot antennas. When the TaN SRRs are not integrated on the planar slot antennas, multiple reflections between the two antennas occur, and a >10-dB fluctuation of S21 at 100-140GHz is observed. When the TaN SRRs are integrated on the planar antennas, the fluctuation of S21 is suppressed to be 3.5dB at 100-140GHz. However, the transmittance of the close-proximity wireless link decreases by integrating TaN SRRs on the planar slot antenna because of reflection at the quartz substrate surface. The integration of the radiator that is composed of single SRR with two capacitors just above the slot antenna increased S21 by 3.5dB at 125GHz. We conducted a data transmission experiment over a close-proximity wireless link that employs radiator-and-TaN-SRR-integrated slot antennas for Tx and Rx, and succeeded to transmit 10-Gbit/s data over the close-proximity wireless link for the first time.

  • Design of Ultra-Thin Wave Absorber with Square Patch Array Considering Electromagnetic Coupling between Patch Array and Back-Metal

    Sota MATSUMOTO  Ryosuke SUGA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    681-684

    In this paper, an ultra-thin wave absorber using a resistive patch array closely-placed in front of a back-metal is designed. The positively large susceptance is required for the patch array to cancel out the negatively large input susceptance of the short-circuited ultra-thin spacer behind the array. It is found that the array needs the gap of 1mm, sheet resistance of less than 20Ω/sq. and patch width of more than 15mm to obtain the zero input susceptance of the absorber with the 1/30 wavelength spacer. Moreover, these parameters were designed considering the electromagnetic coupling between the array and back-metal, and the square patch array absorbers with the thickness from 1/30 to 1/150 wavelength were designed.

  • Absorber Integrated Planar Slot Array Antenna for Suppression of Multiple Reflection in 120-GHz-Band Close-Proximity Wireless System

    Akihiko HIRATA  Jiro HIROKAWA  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    791-800

    This paper proposes the absorber integrated planar array antenna for a 120-GHz-band close proximity wireless system. It consists of split-ring resonators (SRRs) patterned on a quartz substrate and a plate-laminated-waveguide planar slot array antenna. Precise alignment and multiple reflection between Tx-Rx antenna become severe problem as the carrier frequency increases, such as >100GHz. The absorber integrated planar slot array antenna solves these problems. We designed a SRR unit cell that acts as a millimeter-wave (MMW) absorber, and the simulated S11 of the SRR absorber at 125GHz is -37dB. The use of the SRR absorber on the planar slot antenna suppresses the multiple reflection between Tx and Rx antennas, however the transmission loss between Tx and Rx antennas increases. We changed the conductivity and cell size of 2×3 element SRR unit cells directly above the waveguide slots in order to make them act as an SRR director, and the use of the SRR director improved the transmission loss by 2.7dB. We simulated the transmission characteristics of a close-proximity wireless system using the SRR absorber integrated planar slot antennas. The simulated fluctuation of S21 in the 120-130GHz band is below 2.6dB, and the delayed waves that come from the multiple reflection between Tx and Rx antennas were suppressed.

  • Mutual Coupling Reduction between Closely-Placed MSAs for Bi-Static Radar Using Wave Absorber

    Takenori YASUZUMI  Koudai TAKAHASHI  Naoki SANO  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:1
      Page(s):
    77-83

    This paper presents a new simple method for reducing mutual coupling between dual-element microstrip antennas (MSAs) for bistatic radar using a wave absorber. The two elements are closely placed on a substrate by the distance of λ0/4 through the wall-shaped absorber. The height and width of the absorber were optimized for minimum mutual coupling with the electromagnetic simulator. It was found that less than -60 dB minimum mutual coupling can be achieved by the impedance matching of the absorber in a near field. The influence for the reflection characteristics from the absorber is small enough, and the reduction of the antenna gain is only 1.1 dB. The rate of the lost power characteristics showed that the absorption improves the mutual couplings. Then the proposed structure for a practical configuration was investigated. The measurement results of the optimized structure tallied well with the simulation results.

  • Multi-Layered Translucent Wave Absorber Using Carbon Fibers and Applying to Portable Anechoic Chamber

    Takenori YASUZUMI  Shunki KATO  Yuya ISHII  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:12
      Page(s):
    3830-3836

    A new wideband wave absorber with translucent structure using carbon fibers is presented in this paper. The absorber is composed of bundled short carbon fibers which are arranged in front of a back metal and a spacer. Absorption characteristics of the one-layered absorber showed that matching frequencies can be controlled by the thickness of the spacer and the length of the carbon fibers. To further improve the characteristics, multi-layered absorbers are designed with the same procedure as one-layered absorber. The designed absorber showed 15 dB absorption characteristics from 1.0 to 10.0 GHz. Then a small anechoic chamber with the inside dimension of 200 cm200 cm200 cm was fabricated using ninety-six proposed absorbers. The electrical power in the chamber was measured at 2.45 GHz and the results showed that the variation of the power was less than 4 dB inside a circle with radius of 60 cm as work space for electromagnetic measurements.

  • Miniaturization of Parallel-Plate Lens Antenna for Evaluation of Wave Absorber Placed on Ceiling of ETC Gate Open Access

    Takenori YASUZUMI  Nayuta KAMIYA  Ryosuke SUGA  Osamu HASHIMOTO  Yukinori MATSUSHITA  Yasuyuki MATSUDA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:10
      Page(s):
    3225-3231

    This paper presents a compact metal plate lens antenna for evaluating a wave absorber placed on ceiling of the ETC gate. The focal distance of the lens was derived to be 129 cm by the geometrical optics procedure. By arranging the lens in front of a horn antenna, the gain and beamwidth characteristics were improved from 18 dBi to 26 dBi and from 22 degrees to 7 degrees, respectively. Then the antenna characteristics were evaluated when the distance between the antenna and the lens was changed in order to miniaturize the lens antenna. As the result, the changes in beamwidth were held to within 1 dB when the lens came close to the horn antenna. Scattering, phase and electric field intensity of electromagnetic wave were evaluated to clarify the foundation of the given characteristics. It was found that the field intensity for the miniaturized lens antenna is stronger than that for GO designed one though the phase uniformity is worse. The distance between the horn antenna and lens can be reduced to 80 cm. The absorption characteristics for the arranged absorbers which have different absorptions were measured, and it was shown that the proposed method was suitable for specifying the deteriorated absorber in the ETC system.

  • Study on the Temperature Limitation of the Injecting Power to a Pyramidal EM-Wave Absorber

    Tetsuhiro SASAGAWA  Shinya WATANABE  Osamu HASHIMOTO  Toshifumi SAITO  Hiroshi KURIHARA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E92-C No:10
      Page(s):
    1319-1321

    In this paper, first the temperature distribution of the pyramidal EM-wave absorber is calculated in the coupled method. Next, the injected power to the EM-wave absorber is changed to estimate the maximum power density that the EM-wave absorber can resist. As a result, the limitation of the injecting power density to a pyramidal EM-wave absorber is achievable.

  • Realization of 3 m Semi Anechoic Chamber by Using Crossed-Wedge Shaped Hybrid EM Wave Absorber Consisting of Thin Corrugated Dielectric Lossy Sheet

    Toshifumi SAITO  Yoshikazu SUZUKI  Hiroshi KURIHARA  

     
    LETTER-Electronic Materials

      Vol:
    E92-C No:10
      Page(s):
    1325-1327

    This letter proposes a new hybrid EM wave absorber with the crossed-wedge shape, which can be applied to 3 m semi anechoic chambers. In this study, we designed a new hybrid EM wave absorber with the crossed-wedge shape, which consisted of the inorganic and organic thin corrugated dielectric lossy sheet containing organic conductive fibers. Then the 3 m semi anechoic chamber is constructed in the size of 9.0 m6.0 m5.7 m (LWH) using these absorbers, and also the normalized site attenuation (NSA) is measured according to ANSI C63.4 in the frequency range of 30 MHz to 1 GHz. As a result, the measured NSA is obtained within 3 dB of the theoretical one.

  • Wave Absorber with Fine Weatherability for Improving ETC Environment

    Yu MIURA   Kouta MATSUMOTO   Osamu OKADA  Osamu HASHIMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:3
      Page(s):
    385-388

    Wave absorber of rubber sheet containing natural rubber and EPDM is designed, fabricated and measured for improving ETC environment. As a result, proposed absorption material has fine weatherability and wave absorption satisfied with ETC standard can be realized theoretically before and after the weatherability test if the thickness of absorber is fabricated at the ranging from 2.26 mm to 2.52 mm. Moreover, absorber sheet sample based on theoretical values is fabricated and are measured. As a result, 20 dB or more is also confirmed at the incident angle ranging from 5 to 55 degrees experimentally. Therefore, the wave absorber with fine weatherability being satisfied with ETC standard can be realized.

  • Wave Absorber by Using Cylindrical Bars with Magnetic Loss Covers Arranged Metallic Mesh for Improving ETC Environment

    Kouta MATSUMOTO  Atsushi KITAMOTO  Takuya NAKAMURA  Takahiro AOYAGI  Osamu HASHIMOTO  Takashi MIYAMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:2
      Page(s):
    220-223

    The wave absorber composed of cylindrical bars arranged periodically and metallic mesh for improving visibility is proposed for ETC, and characteristics of reflectivity and shielding effect are evaluated analytically and experimentally. As a result, reflectivity of -10 dB and shielding effect of -25 dB are obtained for circularly polarized wave when the gap between cylindrical bars is 30 mm. Therefore, realization of proposed wave absorber for installing between ETC lanes can be clarified.

  • A Study on Electromagnetic Wave Absorber for W-Band Radars Using Permalloy

    Dong Il KIM  Chang-Mook CHOI  Rui LI  Dae Hee LEE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:8
      Page(s):
    2138-2142

    In this paper, we use Permalloy and CPE (Permalloy: CPE=70:30 wt.%) to fabricate the electromagnetic (EM) wave absorber for W-band radars. The EM wave absorption abilities at different thicknesses were simulated using material properties of the EM wave absotber, and an EM wave absorber was manufactured based on the simulated design. The comparisons of simulated and measured results show good agreement. Measurements show that a 1.15 mm thick EM wave absorber has absorption ability higher than 18 dB at 94 GHz for missile guidance radars, and a 1.4 mm EM wave absorber has absorption ability higher than 20 dB at 76 GHz for collision-avoidance radars.

  • Wave Absorber Formed by Arranging Cylindrical Bars at Intervals for Installing between ETC Lanes

    Kouta MATSUMOTO  Takeru OZAWA  Takuya NAKAMURA  Takahiro AOYAGI  Osamu HASHIMOTO  Takashi MIYAMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:11
      Page(s):
    1700-1703

    The wave absorber which is formed by arranging cylindrical bars periodically composed of magnetic loss material and metallic bars is proposed for improving ETC environment, and characteristics of reflection loss and shielding effect are analyzed and measured. As a result, the change of various characteristics can be confirmed quantitatively by changing the thickness of magnetic loss material covering around a metallic bar and the pitch interval between bars. Furthermore, it is clarified that reflection loss of -9 dB and shielding effect of -25 dB are obtained at 5.8 GHz when the covering thickness of material is 1.5 mm and the pitch interval is 16.0 mm. Therefore, the wave absorber formed by arranging cylindrical bars that satisfies various characteristics required for the improvement of ETC environment can be realized.

  • Realization of 3 m Semi Anechoic Chamber by Using Hybrid EM Wave Absorber Consisting of Composite Magnetic Material

    Hiroshi KURIHARA  Motonari YANAGAWA  Yoshikazu SUZUKI  Toshifumi SAITO  

     
    LETTER

      Vol:
    E89-C No:1
      Page(s):
    69-71

    This letter proposes the thinnest hybrid EM wave absorber using a composite magnetic material, which can be applied to the 3 m semi anechoic chambers. We experimentally designed a new hybrid EM wave absorber of the wedge shape, which was made from the ferrite powder, the inorganic fiber and binder. As a result, the length of this absorber could be realized only 6 cm, which was ascertained having the nonflammable. The 3 m semi anechoic chamber is constructed in the size of L9 mW6 mH5.7 m using this absorber, and then the site attenuation is measured according to ANSI C63.4 in the frequency range of 30 MHz-1 GHz. As a result, the measured normalized site attenuation is obtained within 3 dB to the theoretical normalized site attenuation.

  • Analysis of EM Environment for DSRC System on Express Highway with Wave Absorbers on Sidewalls and Pavement

    Ramesh K. POKHAREL  Osamu HASHIMOTO  Makoto TOYOTA  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    61-68

    Electromagnetic (EM) wave absorbers have been used for improving the EM environment of an electronic toll collection (ETC) system on an express highway or a wireless local area network (LAN) system in an indoor environment. In this paper, an efficient multi-ray propagation model, which uses 3D geometry and image techniques to trace multiple signal rays from transmitter to receiver, is employed to analyze the EM environment of a dedicated short-range communication (DSRC) system on an express highway. The validity of the model employed is discussed by the comparison with the results obtained by an experiment on the highways. The analysis shows that the possible undesired communications between onboard equipment that acts as a receiver and DSRC beacon which transmits the radio signals, is improved by increasing the EM wave-absorption capability of the sidewalls and the pavement of the highway. Another advantage of the employed model is that it is effective for investigating the location of wave absorbers to be set up on the highway, and it takes only a fraction of a minute for computation.

  • Investigation on 10 m Semi Anechoic Chamber by Using Grid-Ferrite and Open-Top Hollow Pyramidal EM Wave Absorber

    Hiroshi KURIHARA  Toshifumi SAITO  Yoshikazu SUZUKI  Kouji NAGATA  Masaharu ADACHI  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    16-23

    This paper investigates the 10 m semi anechoic chamber using a new type hybrid EM wave absorber consisted of the grid-ferrite and the open-top hollow pyramidal EM wave absorber. We designed a new type hybrid EM wave absorber, which length could be slightly realized 65 cm. The 10 m semi anechoic chamber was constructed in the size of L21.5 mW13.5 mH8.9 m as the result of the ray-tracing simulation using this absorber. Then, the site attenuation in the constructed anechoic chamber was measured by using the broadband calculable dipole antennas. As the result, the maximum deviations between the measured site attenuation and theoretical calculated one were obtained within 3.6 dB in the frequency range of 30 MHz to 300 MHz. It was confirmed the validity of a new type hybrid EM wave absorber. Moreover, it was confirmed that the measured results agree with the ray-tracing simulation results, in which the differences are about 1.5 dB.

  • An Improvement of Communication Environment for ETC System by Using Transparent EM Wave Absorber

    Hiroshi KURIHARA  Yoshihito HIRAI  Koji TAKIZAWA  Takeo IWATA  Osamu HASHIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2350-2357

    When a large-size car exists on the ETC lane (Electronic Toll Collection System), there is the possibility that the interference on the adjacent lane occurs by the scattering waves from one. In this paper, we propose a new improvement method which the transparent EM wave absorber is placed between the ETC lane and the adjacent one in order to suppress the scattering waves from a large-size car. Therefore, we design the transparent EM wave absorber which consists of the transparent resistive and conductive films. Then, this absorber is produced, and its reflection and transmission coefficients are evaluated. In addition, its transmittance in optics is evaluated. As the results, the reflectivity of this absorber is obtained lower than -20 dB in the oblique incident angle from 0to 30at 5.8 GHz circular polarized wave, abbreviated as CP wave, and also the transmittivity is obtain lower than -27 dB in the oblique incident angle from 0to 70, respectively. On the other hand, the transmittance in optics is obtained higher than 60%. Moreover, we study experimentally on the ETC system with placing this absorber between the ETC lane and the adjacent one. We measured the distribution of receiving power on the adjacent lane, when a water sprinkler existed on the ETC lane. As a result, it is confirmed that the receiving power on the adjacent lane could be realized lower than -70.5 dBm, and then a new improvement method has proven to be very useful in the ETC system.

  • Investigation on EM Wave Absorbers by Using Resistive Film with Capacitive Reactance

    Hiroshi KURIHARA  Toshifumi SAITO  Koji TAKIZAWA  Osamu HASHIMOTO  

     
    PAPER-Electronic Materials

      Vol:
    E88-C No:11
      Page(s):
    2156-2162

    It is known that the thickness of the λ/4 type EM wave absorber having a resistive film with the capacitive reactance is thinner than 1/4 wavelength. This paper investigates EM wave absorbers using the resistive film with capacitive reactance. We introduced the impedance into the resistive film, and then clarified the relationship between the impedance and the matching thickness in the single layer EM wave absorber. Practically, we carried out to grasp the impedance of the resistive films, which were prepared using the conductive flake powder. As the results, we have proven that the matching thickness in the single layer EM wave absorber could be realized 0.17 λ-0.09 λ in the frequency range from 2 GHz to 8 GHz by using these resistive films. We also fabricated the single resistive layer and the double resistive layers EM wave absorber using these resistive films for Dedicated Short Range Communications (DSRC) and wireless Local Area Network (LAN), in which the matching thickness could be reduced to 45% and 30%, respectively, as compared with the each absorber using the non-capacitive reactance.

  • Reactive-Field Anechoic Box for ESPAR Antenna Measurement

    Qing HAN  Keizo INAGAKI  Kyouichi IIGUSA  Robert SCHLUB  Takashi OHIRA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:7
      Page(s):
    1451-1459

    Reactive near field reflection characteristics of commercial RF absorbers are investigated to determine the minimum size of a reactive-field anechoic box necessary for measuring the reactive near field of an ESPAR antenna. The reflectivity of the absorber placed in close proximity to an antenna is inversely proportional to the distance between the antenna and the absorber. For carbon filled urethane foam tapered absorbers, we find that the backscattered reflection characteristics mainly depend on their tapered height rather than the thickness of absorber base. As a result, we show that carbon filled urethane foam pyramidal and wave surface shaped absorbers can be used to make reactive-field anechoic boxes. A prototype of a reactive-field anechoic box is presented and the distance from the absorber to the antenna is reduced to a wavelength. The prototype is verified by comparing its performance with that obtained from a large anechoic chamber.

  • Weatherability of 60 GHz Wave Absorber Using Epoxy-Modified Urethane Rubber Mixed with Carbon Particles

    Tetsu SOH  Kouji WADA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E83-C No:3
      Page(s):
    496-501

    An epoxy-modified urethane rubber mixed with carbon particles is now chosen as the millimeter-wave absorber material in our study. The absorption characteristics of the absorber is measured under temperature changes. The weatherability of our absorber is also clarified based on absorption characteristics, thickness and hardness of the sample. As a result of the temperature characteristics of the absorber, the difference of the maximum absorption frequency under temperature changes is about 1 GHz, however the absorption of 20 dB or more is obtained between 54 and 58 GHz. The result of accelerated artificial exposure test is that 2.8% of the thickness of our sample is shrunk after 1000 hour exposure, and the hardness of rubber is hardened with increasing test time. It is also confirmed that the deterioration of the absorption ranges from 1 to 3 dB, although the absorption of about 20 dB is kept at the frequency range. As a consequence, it is confirmed that the wave absorber using the epoxy-modified urethane rubber mixed with carbon particles has good weatherability including our desired temperature characteristics, and it is suitable for outdoor use.

  • The Transparent Wave Absorber Using Resistive Film for V-Band Frequency

    Koji TAKIZAWA  Osamu HASHIMOTO  Takumi ABE  Shinkichi NISHIMOTO  

     
    PAPER-Related Technical Issues

      Vol:
    E81-C No:6
      Page(s):
    941-947

    We present a realization of the transparent wave absorber effective for the use at V-band frequency. First, we propose a structure of the transparent wave absorber consisting of spacer (polycarbonate) and two transparent resistive sheet (polyethylene terephtalate deposited with Indium Tin Oxide) used as a reflection film and an absorption film. Second, a design chart for this type of wave absorber is shown. Third, a design method and manufacturing process of the transparent wave absorber are described particularly for V-band frequency. As a result, the measurement of reflection loss of the absorber indicate that a peak absorption of 32-38 dB is attained at a target frequency of 60 GHz.

1-20hit(23hit)