The search functionality is under construction.

Keyword Search Result

[Keyword] wideband LNA(2hit)

1-2hit
  • A Wideband Noise Cancelling Low Noise Amplifier for 3GPP LTE Standard

    Viet-Hoang LE  Hoai-Nam NGUYEN  Sun-a KIM  Seok-Kyun HAN  Sang-Gug LEE  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:6
      Page(s):
    1127-1130

    This paper presents the design of a wideband low noise amplifier (LNA) for the 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standard. The proposed LNA uses a common gate topology with a noise cancellation technique for wideband (0.7 to 2.7 GHz) and low noise operation. The capacitive cross coupling technique is adopted for the common gate amplifier. Consequently input matching is achieved with lower transconductance, thereby reducing the power consumption and noise contribution. The LNA is designed in a 0.18 µm process and the simulations show lower than -10 dB input return loss (S11), and 2.42.6 dB noise figure (NF) over the entire operating band (0.72.7 GHz) while drawing 9 mA from a 1.8 V supply.

  • A 2.3-7 GHz CMOS High Gain LNA Using CS-CS Cascode with Coupling C

    Hangue PARK  Sungho LEE  Jaejun LEE  Sangwook NAM  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E92-C No:8
      Page(s):
    1091-1094

    A fully integrated CMOS wideband Low Noise Amplifier (LNA) operating over 2.3-7 GHz is designed and fabricated using a 0.18 µm CMOS process. The proposed structure is a common source-common source (CS-CS) cascode amplifier with a coupling capacitor. It realizes both low voltage drop at load resistor (Rload) and high gain over 2.3-7 GHz with simultaneous noise and input matching and low power consumption. This paper presents the proposed design technique of a wideband LNA, and verifies its performance by simulation and measurement. This wideband LNA achieves an average gain (S21) of 16.5 (dB), an input return loss (S11) less than -8 dB, a noise figure (NF) of 3.4-6.7 dB, and a third order input interception point (IIP3) of -7.5-3 dBm at 2.3-7 GHz with power consumption of 10.8 mW under 1.8 V VDD.