In this paper, we describe our superconducting digital technology that uses Nb/AlOx/Nb Josephson junctions. Superconducting devices have intrinsically superior characteristics than those of semiconductor devices, and Nb/AlOx/Nb junctions have ideal current-voltage characteristics for digital applications. Superconducting devices that use Nb/AlOx/Nb junctions have being actively developed because of their high speed and low power characteristics. Presently, we can fabricate more than twenty thousand junctions on one chip. Using niobium technology, a superconducting 4-kbit RAM has been already successfully developed. We have demonstrated the operation of a network system with a superconducting network chip. Some problems, such as difficulty in high-speed testing, disturbance from trapped magnetic flux and so on, have been overcome by techniques such as a clock-driven testing method, moat structures and so on. The developed technologies, such as the fabrication technology, the design technology for moat structures and so on, must become the basic keys for the development of digital applications based on a single flux quantum device, which will be a promising component for ultra-high speed systems in the twenty-first century.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shuichi TAHARA, Hideaki NUMATA, Shinichi YOROZU, Yoshihito HASHIMOTO, Shuichi NAGASAWA, "Superconducting Technology for Digital Applications Using Niobium Josephson Junctions" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 1, pp. 60-68, January 2000, doi: .
Abstract: In this paper, we describe our superconducting digital technology that uses Nb/AlOx/Nb Josephson junctions. Superconducting devices have intrinsically superior characteristics than those of semiconductor devices, and Nb/AlOx/Nb junctions have ideal current-voltage characteristics for digital applications. Superconducting devices that use Nb/AlOx/Nb junctions have being actively developed because of their high speed and low power characteristics. Presently, we can fabricate more than twenty thousand junctions on one chip. Using niobium technology, a superconducting 4-kbit RAM has been already successfully developed. We have demonstrated the operation of a network system with a superconducting network chip. Some problems, such as difficulty in high-speed testing, disturbance from trapped magnetic flux and so on, have been overcome by techniques such as a clock-driven testing method, moat structures and so on. The developed technologies, such as the fabrication technology, the design technology for moat structures and so on, must become the basic keys for the development of digital applications based on a single flux quantum device, which will be a promising component for ultra-high speed systems in the twenty-first century.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_1_60/_p
Copy
@ARTICLE{e83-c_1_60,
author={Shuichi TAHARA, Hideaki NUMATA, Shinichi YOROZU, Yoshihito HASHIMOTO, Shuichi NAGASAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Superconducting Technology for Digital Applications Using Niobium Josephson Junctions},
year={2000},
volume={E83-C},
number={1},
pages={60-68},
abstract={In this paper, we describe our superconducting digital technology that uses Nb/AlOx/Nb Josephson junctions. Superconducting devices have intrinsically superior characteristics than those of semiconductor devices, and Nb/AlOx/Nb junctions have ideal current-voltage characteristics for digital applications. Superconducting devices that use Nb/AlOx/Nb junctions have being actively developed because of their high speed and low power characteristics. Presently, we can fabricate more than twenty thousand junctions on one chip. Using niobium technology, a superconducting 4-kbit RAM has been already successfully developed. We have demonstrated the operation of a network system with a superconducting network chip. Some problems, such as difficulty in high-speed testing, disturbance from trapped magnetic flux and so on, have been overcome by techniques such as a clock-driven testing method, moat structures and so on. The developed technologies, such as the fabrication technology, the design technology for moat structures and so on, must become the basic keys for the development of digital applications based on a single flux quantum device, which will be a promising component for ultra-high speed systems in the twenty-first century.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Superconducting Technology for Digital Applications Using Niobium Josephson Junctions
T2 - IEICE TRANSACTIONS on Electronics
SP - 60
EP - 68
AU - Shuichi TAHARA
AU - Hideaki NUMATA
AU - Shinichi YOROZU
AU - Yoshihito HASHIMOTO
AU - Shuichi NAGASAWA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 2000
AB - In this paper, we describe our superconducting digital technology that uses Nb/AlOx/Nb Josephson junctions. Superconducting devices have intrinsically superior characteristics than those of semiconductor devices, and Nb/AlOx/Nb junctions have ideal current-voltage characteristics for digital applications. Superconducting devices that use Nb/AlOx/Nb junctions have being actively developed because of their high speed and low power characteristics. Presently, we can fabricate more than twenty thousand junctions on one chip. Using niobium technology, a superconducting 4-kbit RAM has been already successfully developed. We have demonstrated the operation of a network system with a superconducting network chip. Some problems, such as difficulty in high-speed testing, disturbance from trapped magnetic flux and so on, have been overcome by techniques such as a clock-driven testing method, moat structures and so on. The developed technologies, such as the fabrication technology, the design technology for moat structures and so on, must become the basic keys for the development of digital applications based on a single flux quantum device, which will be a promising component for ultra-high speed systems in the twenty-first century.
ER -