The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Josephson junctions(9hit)

1-9hit
  • Approaches to High Performance Terahertz-Waves Emitting Devices Utilizing Single Crystals of High Temperature Superconductor Bi2Sr2CaCu2O8+δ Open Access

    Takanari KASHIWAGI  Genki KUWANO  Shungo NAKAGAWA  Mayu NAKAYAMA  Jeonghyuk KIM  Kanae NAGAYAMA  Takuya YUHARA  Takuya YAMAGUCHI  Yuma SAITO  Shohei SUZUKI  Shotaro YAMADA  Ryuta KIKUCHI  Manabu TSUJIMOTO  Hidetoshi MINAMI  Kazuo KADOWAKI  

     
    INVITED PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    281-288

    Our group has developed terahertz(THz)-waves emitting devices utilizing single crystals of high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212). The working principle of the device is based on the AC Josephson effect which is originated in the intrinsic Josephson junctions (IJJs) constructed in Bi2212 single crystals. In principle, based on the superconducting gap of the compound and the AC Josephson effect, the emission frequency range from 0.1 to 15 THz can be generated by simply adjusting bias voltages to the IJJs. In order to improve the device performances, we have performed continuous improvement to the device structures. In this paper, we present our recent approaches to high performance Bi2212 THz-waves emitters. Firstly, approaches to the reduction of self Joule heating of the devices is described. In virtue of improved device structures using Bi2212 crystal chips, the device characteristics, such as the radiation frequency and the output power, become better than previous structures. Secondly, developments of THz-waves emitting devices using IJJs-mesas coupled with external structures are explained. The results clearly indicate that the external structures are very useful not only to obtain desired radiation frequencies higher than 1 THz but also to control radiation frequency characteristics. Finally, approaches to further understanding of the spontaneous synchronization of IJJs is presented. The device characteristics obtained through the approaches would play important roles in future developments of THz-waves emitting devices by use of Bi2212 single crystals.

  • Energy/Space-Efficient Rapid Single-Flux-Quantum Circuits by Using π-Shifted Josephson Junctions

    Tomohiro KAMIYA  Masamitsu TANAKA  Kyosuke SANO  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    385-390

    We present a concept of an advanced rapid single-flux-quantum (RSFQ) logic circuit family using the combination of 0-shifted and π-shifted Josephson junctions. A π-shift in the current-phase relationship can be obtained in several types of Josephson junctions, such as Josephson junctions containing a ferromagnet barrier layer, depending on its thickness and temperature. We use a superconducting quantum interference devices composed of a pair of 0- and π-shifted Josephson junctions (0-π SQUIDs) as a basic circuit element. Unlike the conventional RSFQ logic, bistability is obtained by spontaneous circular currents without using a large superconductor loop, and the state can be flipped by smaller driving currents. These features lead to energy- and/or space-efficient logic gates. In this paper, we show several example circuits where we represent signals by flips of the states of a 0-π SQUID. We obtained successful operation of the circuits from numerical simulation.

  • NbN Josephson Junctions for Single-Flux-Quantum Circuits

    Hiroyuki AKAIKE  Naoto NAITO  Yuki NAGAI  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    301-306

    We describe the fabrication processes and electrical characteristics of two types of NbN junctions. One is a self-shunted NbN/NbNx/AlN/NbN Josephson junction, which is expected to improve the density of integrated circuits; the other is an underdamped NbN/AlNx/NbN tunnel junction with radical-nitride AlNx barriers, which has highly controllable junction characteristics. In the former, the junction characteristics were changed from underdamped to overdamped by varying the thickness of the NbNx layer. Overdamped junctions with a 6-nm-thick NbNx film exhibited a characteristic voltage of Vc = 0.8 mV and a critical current density of Jc = 22 A/cm2 at 4.2 K. In the junctions with radical-nitride AlNx barriers, Jc could be controlled in the range 0.01-3 kA/cm2 by varying the process conditions, and good uniformity of the junction characteristics was obtained.

  • Niobium-Silicide Junction Technology for Superconducting Digital Electronics Open Access

    David OLAYA  Paul D. DRESSELHAUS  Samuel P. BENZ  

     
    INVITED PAPER

      Vol:
    E93-C No:4
      Page(s):
    463-467

    We present a technology based on Nb/NbxSi1-x/Nb junctions, with barriers near the metal-insulator transition, for applications in superconducting electronics (SCE) as an alternative to Nb/AlOx/Nb tunnel junctions. Josephson junctions with co-sputtered amorphous Nb-Si barriers can be made with a wide variety of electrical properties: critical current density (Jc), capacitance (C), and normal resistance (Rn) can be reliably selected within wide ranges by choosing both the barrier thickness and Nb concentration. Nonhysteretic Nb/NbxSi1-x/Nb junctions with IcRn products greater than 1 mV, where Ic is the critical current, and Jc values near 100 kA/cm2 have been fabricated and are promising for superconductive digital electronics. These barriers have thicknesses of several nanometers; this improves fabrication reproducibility and junction uniformity, both of which are necessary for complex digital circuits. Recent improvements to our deposition system have allowed us to obtain better uniformity across the wafer.

  • Prospects and Problems in Fabrication of MgB2 Josephson Junctions

    Kenji UEDA  Michio NAITO  

     
    INVITED REVIEW PAPER

      Vol:
    E88-C No:2
      Page(s):
    226-231

    We briefly survey recent developments in the thin film synthesis and junction fabrication of MgB2 toward superconducting electronics. The most serious problem in the thin film synthesis of MgB2 is the high vapor pressure required for phase stability. This problem makes in-situ film growth difficult. However, there has been substantial progress in thin film technology for MgB2 in the past three years. The low-temperature thin-film process in a UHV chamber can produce high-quality MgB2 films with Tc 35 K. Furthermore, technology to produce single-crystal epitaxial MgB2 films has recently been developed by using hybrid physical-chemical vapor deposition. With regard to Josephson junctions, various types of junctions have been fabricated, all of which indicate that MgB2 has potential for superconducting devices that operate at 20-30 K, the temperature reached by current commercial cryocoolers.

  • Sputtering Conditions and Properties of In-Plane-Aligned Y-Ba-Cu-O Films for Devices Application

    Lan ZHANG  Masataka MORIYA  Tadayuki KOBAYASHI  Masashi MUKAIDA  Toshinari GOTO  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    202-205

    In-plane-aligned a-axis-oriented YBa2Cu3O7-δ (YBCO) thin films are attractive for the formation of planar intrinsic Josephson devices. In this study, these films were deposited by dc sputtering on LaSrGaO4 (LSGO) (100) substrates and the dependence of the characteristics on the deposition conditions was investigated. In-plane-aligned a-axis-oriented YBCO thin films were successfully grown in the substrate temperature range of 555-615. With the temperature gradient method, it was seen that the critical temperature of the film increased to 81 K. The current-voltage characteristic along the c-axis exhibited clear multibranch structures. These results indicate that ion-cleaning of the substrate surface broadens the growth temperature range of these films and planar intrinsic Josephson devices can be fabricated from these films.

  • Superconducting Technology for Digital Applications Using Niobium Josephson Junctions

    Shuichi TAHARA  Hideaki NUMATA  Shinichi YOROZU  Yoshihito HASHIMOTO  Shuichi NAGASAWA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    60-68

    In this paper, we describe our superconducting digital technology that uses Nb/AlOx/Nb Josephson junctions. Superconducting devices have intrinsically superior characteristics than those of semiconductor devices, and Nb/AlOx/Nb junctions have ideal current-voltage characteristics for digital applications. Superconducting devices that use Nb/AlOx/Nb junctions have being actively developed because of their high speed and low power characteristics. Presently, we can fabricate more than twenty thousand junctions on one chip. Using niobium technology, a superconducting 4-kbit RAM has been already successfully developed. We have demonstrated the operation of a network system with a superconducting network chip. Some problems, such as difficulty in high-speed testing, disturbance from trapped magnetic flux and so on, have been overcome by techniques such as a clock-driven testing method, moat structures and so on. The developed technologies, such as the fabrication technology, the design technology for moat structures and so on, must become the basic keys for the development of digital applications based on a single flux quantum device, which will be a promising component for ultra-high speed systems in the twenty-first century.

  • Interfacial Study of Nb Josephson Junctions with Overlayer Structure

    Shin'ichi MOROHASHI  

     
    INVITED PAPER-LTS

      Vol:
    E77-C No:8
      Page(s):
    1150-1156

    We compare interfaces of Nb/AlOx-Al/Nb and Nb/ZrOx-Zr/Nb junctions using secondary ion mass spectroscopy and cross-sectional transmission electron microscopy. We have clarified that an interface of the Nb/AlOx-Al/Nb junction is drastically different from that of the Nb/ZrOxZr/Nb junction. An adsorbed water vapor layer plays an important role in suppressing grain boundary diffusion between Nb and Al at the interface of the Nb/AlOxAl/Nb junction. In depositing Nb and Al at low power and cooling the substrate, it is important to control the formation of the adsorbed water vapor layer for fabricating Nb/AlOx-Al/Nb junctions exhibiting excellent current-voltage characteristics.

  • Fabrication of Nb/AlOx/Nb Josephson Tunnel Junctions by Sputtering Apparatus with Load-Lock System

    Akiyoshi NAKAYAMA  Naoki INABA  Shigenori SAWACHI  Kazunari ISHIZU  Yoichi OKABE  

     
    PAPER-LTS

      Vol:
    E77-C No:8
      Page(s):
    1164-1168

    We have fabricated Nb/AlOx/Nb Josephson tunnel junctions by a sputtering apparatus with a load-lock system. This sputtering apparatus had the sub chamber for preparation and the main chamber for sputtering. The substrate temperature was confirmed to be kept less than 85 during Nb sputtering at the deposition rate of 1.18 nm/s for 7 minutes. The junctions that had 50µm50 µm area successfully showed the Vm value (the product of the critical current and the subgap resistance at 2 mV) as high as 50 mV at the current density of 100 A/cm2.