The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] memory(653hit)

1-20hit(653hit)

  • Runtime Tests for Memory Error Handlers of In-Memory Key Value Stores Using MemFI Open Access

    Naoya NEZU  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2024/07/11
      Vol:
    E107-D No:11
      Page(s):
    1408-1421

    Modern memory devices such as DRAM are prone to errors that occur because of unintended bit flips during their operation. Since memory errors severely impact in-memory key-value stores (KVSes), software mechanisms for hardening them against memory errors are being explored. However, it is hard to efficiently test the memory error handling code due to its characteristics: the code is event-driven, the handlers depend on the memory object, and in-memory KVSes manage various objects in huge memory space. This paper presents MemFI that supports runtime tests for the memory error handlers of in-memory KVSes. Our approach performs the software fault injection of memory errors at the memory object level to trigger the target handler while smoothly carrying out tests on the same running state. To show the effectiveness of MemFI, we integrate error handling mechanisms into a real-world in-memory KVS, memcached 1.6.9 and Redis 6.2.7, and check their behavior using the MemFI prototypes. The results show that the MemFI-based runtime test allows us to check the behavior of the error handling mechanisms. We also show its efficiency by comparing it to other fault injection approaches based on a trial model.

  • Comprehensive Analysis of Read Fluctuations in ReRAM CiM by Using Fluctuation Pattern Classifier Open Access

    Ayumu YAMADA  Zhiyuan HUANG  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    416-425

    In this work, fluctuation patterns of ReRAM current are classified automatically by proposed fluctuation pattern classifier (FPC). FPC is trained with artificially created dataset to overcome the difficulties of measured current signals, including the annotation cost and imbalanced data amount. Using FPC, fluctuation occurrence under different write conditions is analyzed for both HRS and LRS current. Based on the measurement and classification results, physical models of fluctuations are established.

  • REM-CiM: Attentional RGB-Event Fusion Multi-Modal Analog CiM for Area/Energy-Efficient Edge Object Detection during Both Day and Night Open Access

    Yuya ICHIKAWA  Ayumu YAMADA  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    426-435

    Integrating RGB and event sensors improves object detection accuracy, especially during the night, due to the high-dynamic range of event camera. However, introducing an event sensor leads to an increase in computational resources, which makes the implementation of RGB-event fusion multi-modal AI to CiM difficult. To tackle this issue, this paper proposes RGB-Event fusion Multi-modal analog Computation-in-Memory (CiM), called REM-CiM, for multi-modal edge object detection AI. In REM-CiM, two proposals about multi-modal AI algorithms and circuit implementation are co-designed. First, Memory capacity-Efficient Attentional Feature Pyramid Network (MEA-FPN), the model architecture for RGB-event fusion analog CiM, is proposed for parameter-efficient RGB-event fusion. Convolution-less bi-directional calibration (C-BDC) in MEA-FPN extracts important features of each modality with attention modules, while reducing the number of weight parameters by removing large convolutional operations from conventional BDC. Proposed MEA-FPN w/ C-BDC achieves a 76% reduction of parameters while maintaining mean Average Precision (mAP) degradation to < 2.3% during both day and night, compared with Attentional FPN fusion (A-FPN), a conventional BDC-adopted FPN fusion. Second, the low-bit quantization with clipping (LQC) is proposed to reduce area/energy. Proposed REM-CiM with MEA-FPN and LQC achieves almost the same memory cells, 21% less ADC area, 24% less ADC energy and 0.17% higher mAP than conventional FPN fusion CiM without LQC.

  • 3D Parallel ReRAM Computation-in-Memory for Hyperdimensional Computing Open Access

    Fuyuki KIHARA  Chihiro MATSUI  Ken TAKEUCHI  

     
    BRIEF PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-C No:10
      Page(s):
    436-439

    In this work, we propose a 1T1R ReRAM CiM architecture for Hyperdimensional Computing (HDC). The number of Source Lines and Bit Lines is reduced by introducing memory cells that are connected in series, which is especially advantageous when using a 3D implementation. The results of CiM operations contain errors, but HDC is robust against them, so that even if the XNOR operation has an error of 25%, the inference accuracy remains above 90%.

  • Digital/Analog-Operation of Hf-Based FeNOS Nonvolatile Memory Utilizing Ferroelectric Nondoped HfO2 Blocking Layer Open Access

    Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2024/06/03
      Vol:
    E107-C No:9
      Page(s):
    232-236

    In this research, we investigated the digital/analog-operation utilizing ferroelectric nondoped HfO2 (FeND-HfO2) as a blocking layer (BL) in the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM), so called FeNOS NVM. The Al/HfN0.5/HfN1.1/HfO2/p-Si(100) FeNOS diodes realized small equivalent oxide thickness (EOT) of 4.5 nm with the density of interface states (Dit) of 5.3 × 1010 eV-1cm-2 which were suitable for high-speed and low-voltage operation. The flat-band voltage (VFB) was well controlled as 80-100 mV with the input pulses of ±3 V/100 ms controlled by the partial polarization of FeND-HfO2 BL at each 2-bit state operated by the charge injection with the input pulses of +8 V/1-100 ms.

  • Extending Binary Neural Networks to Bayesian Neural Networks with Probabilistic Interpretation of Binary Weights Open Access

    Taisei SAITO  Kota ANDO  Tetsuya ASAI  

     
    PAPER

      Pubricized:
    2024/04/17
      Vol:
    E107-D No:8
      Page(s):
    949-957

    Neural networks (NNs) fail to perform well or make excessive predictions when predicting out-of-distribution or unseen datasets. In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty of their inference to solve this problem. Nevertheless, BNNs have not been widely adopted owing to their increased memory and computational cost. In this study, we propose a novel approach to extend binary neural networks by introducing a probabilistic interpretation of binary weights, effectively converting them into BNNs. The proposed approach can reduce the number of weights by half compared to the conventional method. A comprehensive comparative analysis with established methods like Monte Carlo dropout and Bayes by backprop was performed to assess the performance and capabilities of our proposed technique in terms of accuracy and capturing uncertainty. Through this analysis, we aim to provide insights into the advantages of this Bayesian extension.

  • Long Short-Team Memory for Forecasting Degradation Recovery Process with Binary Maintenance Intervention Records Open Access

    Katsuya KOSUKEGAWA  Kazuhiko KAWAMOTO  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    666-669

    We considered the problem of forecasting the degradation recovery process of civil structures for prognosis and health management. In this process, structural health degrades over time but recovers when a maintenance intervention is performed. Maintenance interventions are typically recorded in terms of date and type. Such records can be represented as binary time series. Using binary maintenance intervention records, we forecast the process by using Long Short-Term Memory (LSTM). In this study, we experimentally examined how to feed binary time series data into LSTM. To this end, we compared the concatenation and reinitialization methods. The former is used to concatenate maintenance intervention records and health data and feed them into LSTM. The latter is used to reinitialize the LSTM internal memory when maintenance intervention is performed. The experimental results with the synthetic data revealed that the concatenation method outperformed the reinitialization method.

  • rOOM: A Rust-Based Linux Out of Memory Kernel Component

    Linhan LI  Qianying ZHANG  Zekun XU  Shijun ZHAO  Zhiping SHI  Yong GUAN  

     
    PAPER

      Pubricized:
    2023/12/14
      Vol:
    E107-D No:3
      Page(s):
    245-256

    The Linux kernel has been applied in various security-sensitive fields, so ensuring its security is crucial. Vulnerabilities in the Linux kernel are usually caused by undefined behaviors of the C programming language, the most threatening of which are memory safety vulnerabilities. Both the software-based and hardware approaches to memory safety have disadvantages of poor performance, false positives, and poor compatibility. This paper explores the feasibility of using the safe programming language Rust to reconstruct a Linux kernel component and open-source the component's code. We leverage the Rust FFI mechanism to design a safe foreign interface layer to enable the reconstructed component to invoke other Linux functionalities, and then use Rust to reconstruct the component, during which we leverage Rust's type-safety and ownership mechanisms to improve its security, and finally export the C interface of the component to enable the invocation by the Linux kernel. The performance and memory overhead of the reconstructed component, referred to as “rOOM”, were evaluated, revealing a performance overhead of 8.9% in kernel mode, 5% in user mode, 3% in real time, and a memory overhead of 0.06%. These results suggest that it is possible to develop key components of the Linux kernel using Rust in terms of functionality, performance, and memory overhead.

  • Adaptive Lossy Data Compression Extended Architecture for Memory Bandwidth Conservation in SpMV

    Siyi HU  Makiko ITO  Takahide YOSHIKAWA  Yuan HE  Hiroshi NAKAMURA  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2023/07/20
      Vol:
    E106-D No:12
      Page(s):
    2015-2025

    Widely adopted by machine learning and graph processing applications nowadays, sparse matrix-Vector multiplication (SpMV) is a very popular algorithm in linear algebra. This is especially the case for fully-connected MLP layers, which dominate many SpMV computations and play a substantial role in diverse services. As a consequence, a large fraction of data center cycles is spent on SpMV kernels. Meanwhile, despite having efficient storage options against sparsity (such as CSR or CSC), SpMV kernels still suffer from the problem of limited memory bandwidth during data transferring because of the memory hierarchy of modern computing systems. In more detail, we find that both integer and floating-point data used in SpMV kernels are handled plainly without any necessary pre-processing. Therefore, we believe bandwidth conservation techniques, such as data compression, may dramatically help SpMV kernels when data is transferred between the main memory and the Last Level Cache (LLC). Furthermore, we also observe that convergence conditions in some typical scientific computation benchmarks (based on SpMV kernels) will not be degraded when adopting lower precision floating-point data. Based on these findings, in this work, we propose a simple yet effective data compression scheme that can be extended to general purpose computing architectures or HPC systems preferably. When it is adopted, a best-case speedup of 1.92x is made. Besides, evaluations with both the CG kernel and the PageRank algorithm indicate that our proposal introduces negligible overhead on both the convergence speed and the accuracy of final results.

  • Joint BCH and XOR Decoding for Solid State Drives

    Naoko KIFUNE  Hironori UCHIKAWA  

     
    PAPER-Coding Theory

      Pubricized:
    2023/04/12
      Vol:
    E106-A No:10
      Page(s):
    1322-1329

    At a flash memory, each stored data frame is protected by error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) codes from random errors. Exclusive-OR (XOR) based erasure codes like RAID-5 have also been employed at the flash memory to protect from memory block defects. Conventionally, the ECC and erasure codes are used separately since their target errors are different. Due to recent aggressive technology scaling, additional error correction capability for random errors is required without adding redundancy. We propose an algorithm to improve error correction capability by using XOR parity with a simple counter that counts the number of unreliable bits in the XOR stripe. We also propose to apply Chase decoding to the proposed algorithm. The counter makes it possible to reduce the false correction and execute the efficient Chase decoding. We show that combining the proposed algorithm with Chase decoding can significantly improve the decoding performance.

  • Nonvolatile Storage Cells Using FiCC for IoT Processors with Intermittent Operations

    Yuki ABE  Kazutoshi KOBAYASHI  Jun SHIOMI  Hiroyuki OCHI  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    546-555

    Energy harvesting has been widely investigated as a potential solution to supply power for Internet of Things (IoT) devices. Computing devices must operate intermittently rather than continuously, because harvested energy is unstable and some of IoT applications can be periodic. Therefore, processors for IoT devices with intermittent operation must feature a hibernation mode with zero-standby-power in addition to energy-efficient normal mode. In this paper, we describe the layout design and measurement results of a nonvolatile standard cell memory (NV-SCM) and nonvolatile flip-flops (NV-FF) with a nonvolatile memory using Fishbone-in-Cage Capacitor (FiCC) suitable for IoT processors with intermittent operations. They can be fabricated in any conventional CMOS process without any additional mask. NV-SCM and NV-FF are fabricated in a 180nm CMOS process technology. The area overhead by nonvolatility of a bit cell are 74% in NV-SCM and 29% in NV-FF, respectively. We confirmed full functionality of the NV-SCM and NV-FF. The nonvolatile system using proposed NV-SCM and NV-FF can reduce the energy consumption by 24.3% compared to the volatile system when hibernation/normal operation time ratio is 500 as shown in the simulation.

  • Kr-Plasma Sputtering for Pt Gate Electrode Deposition on MFSFET with 5 nm-Thick Ferroelectric Nondoped HfO2 Gate Insulator for Analog Memory Application

    Joong-Won SHIN  Masakazu TANUMA  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2023/06/02
      Vol:
    E106-C No:10
      Page(s):
    581-587

    In this research, we investigated the threshold voltage (VTH) control by partial polarization of metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5 nm-thick nondoped HfO2 gate insulator utilizing Kr-plasma sputtering for Pt gate electrode deposition. The remnant polarization (2Pr) of 7.2 μC/cm2 was realized by Kr-plasma sputtering for Pt gate electrode deposition. The memory window (MW) of 0.58 V was realized by the pulse amplitude and width of -5/5 V, 100 ms. Furthermore, the VTH of MFSFET was controllable by program/erase (P/E) input pulse even with the pulse width below 100 ns which may be caused by the reduction of leakage current with decreasing plasma damage.

  • Single-Power-Supply Six-Transistor CMOS SRAM Enabling Low-Voltage Writing, Low-Voltage Reading, and Low Standby Power Consumption Open Access

    Tadayoshi ENOMOTO  Nobuaki KOBAYASHI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/03/16
      Vol:
    E106-C No:9
      Page(s):
    466-476

    We developed a self-controllable voltage level (SVL) circuit and applied this circuit to a single-power-supply, six-transistor complementary metal-oxide-semiconductor static random-access memory (SRAM) to not only improve both write and read performances but also to achieve low standby power and data retention (holding) capability. The SVL circuit comprises only three MOSFETs (i.e., pull-up, pull-down and bypass MOSFETs). The SVL circuit is able to adaptively generate both optimal memory cell voltages and word line voltages depending on which mode of operation (i.e., write, read or hold operation) was used. The write margin (VWM) and read margin (VRM) of the developed (dvlp) SRAM at a supply voltage (VDD) of 1V were 0.470 and 0.1923V, respectively. These values were 1.309 and 2.093 times VWM and VRM of the conventional (conv) SRAM, respectively. At a large threshold voltage (Vt) variability (=+6σ), the minimum power supply voltage (VMin) for the write operation of the conv SRAM was 0.37V, whereas it decreased to 0.22V for the dvlp SRAM. VMin for the read operation of the conv SRAM was 1.05V when the Vt variability (=-6σ) was large, but the dvlp SRAM lowered it to 0.41V. These results show that the SVL circuit expands the operating voltage range for both write and read operations to lower voltages. The dvlp SRAM reduces the standby power consumption (PST) while retaining data. The measured PST of the 2k-bit, 90-nm dvlp SRAM was only 0.957µW at VDD=1.0V, which was 9.46% of PST of the conv SRAM (10.12µW). The Si area overhead of the SVL circuits was only 1.383% of the dvlp SRAM.

  • A Fully Analog Deep Neural Network Inference Accelerator with Pipeline Registers Based on Master-Slave Switched Capacitors

    Yaxin MEI  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2023/03/08
      Vol:
    E106-C No:9
      Page(s):
    477-485

    A fully analog pipelined deep neural network (DNN) accelerator is proposed, which is constructed by using pipeline registers based on master-slave switched capacitors. The idea of the master-slave switched capacitors is an analog equivalent of the delayed flip-flop (D-FF) which has been used as a digital pipeline register. To estimate the performance of the pipeline register, it is applied to a conventional DNN which performs non-pipeline operation. Compared with the conventional DNN, the cycle time is reduced by 61.5% and data rate is increased by 160%. The accuracy reaches 99.6% in MNIST classification test. The energy consumption per classification is reduced by 88.2% to 0.128µJ, achieving an energy efficiency of 1.05TOPS/W and a throughput of 0.538TOPS in 180nm technology node.

  • Protection Mechanism of Kernel Data Using Memory Protection Key

    Hiroki KUZUNO  Toshihiro YAMAUCHI  

     
    PAPER

      Pubricized:
    2023/06/30
      Vol:
    E106-D No:9
      Page(s):
    1326-1338

    Memory corruption can modify the kernel data of an operating system kernel through exploiting kernel vulnerabilities that allow privilege escalation and defeats security mechanisms. To prevent memory corruption, the several security mechanisms are proposed. Kernel address space layout randomization randomizes the virtual address layout of the kernel. The kernel control flow integrity verifies the order of invoking kernel codes. The additional kernel observer focuses on the unintended privilege modifications. However, illegal writing of kernel data is not prevented by these existing security mechanisms. Therefore, an adversary can achieve the privilege escalation and the defeat of security mechanisms. This study proposes a kernel data protection mechanism (KDPM), which is a novel security design that restricts the writing of specific kernel data. The KDPM adopts a memory protection key (MPK) to control the write restriction of kernel data. The KDPM with the MPK ensures that the writing of privileged information for user processes and the writing of kernel data related to the mandatory access control. These are dynamically restricted during the invocation of specific system calls and the execution of specific kernel codes. Further, the KDPM is implemented on the latest Linux with an MPK emulator. The evaluation results indicate the possibility of preventing the illegal writing of kernel data. The KDPM showed an acceptable performance cost, measured by the overhead, which was from 2.96% to 9.01% of system call invocations, whereas the performance load on the MPK operations was 22.1ns to 1347.9ns. Additionally, the KDPM requires 137 to 176 instructions for its implementations.

  • Toward Predictive Modeling of Solar Power Generation for Multiple Power Plants Open Access

    Kundjanasith THONGLEK  Kohei ICHIKAWA  Keichi TAKAHASHI  Chawanat NAKASAN  Kazufumi YUASA  Tadatoshi BABASAKI  Hajimu IIDA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2022/12/22
      Vol:
    E106-B No:7
      Page(s):
    547-556

    Solar power is the most widely used renewable energy source, which reduces pollution consequences from using conventional fossil fuels. However, supplying stable power from solar power generation remains challenging because it is difficult to forecast power generation. Accurate prediction of solar power generation would allow effective control of the amount of electricity stored in batteries, leading in a stable supply of electricity. Although the number of power plants is increasing, building a solar power prediction model for a newly constructed power plant usually requires collecting a new training dataset for the new power plant, which takes time to collect a sufficient amount of data. This paper aims to develop a highly accurate solar power prediction model for multiple power plants available for both new and existing power plants. The proposed method trains the model on existing multiple power plants to generate a general prediction model, and then uses it for a new power plant while waiting for the data to be collected. In addition, the proposed method tunes the general prediction model on the newly collected dataset and improves the accuracy for the new power plant. We evaluated the proposed method on 55 power plants in Japan with the dataset collected for two and a half years. As a result, the pre-trained models of our proposed method significantly reduces the average RMSE of the baseline method by 73.19%. This indicates that the model can generalize over multiple power plants, and training using datasets from other power plants is effective in reducing the RMSE. Fine-tuning the pre-trained model further reduces the RMSE by 8.12%.

  • Compensation of Transmitter Memory Nonlinearity by Post-Reception Blind Nonlinear Compensator with FDE Open Access

    Yasushi YAMAO  Tetsuki TANIGUCHI  Hiroki ITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/11
      Vol:
    E106-B No:7
      Page(s):
    595-602

    High-accuracy wideband signal transmission is essential for 5G and Beyond wireless communication systems. Memory nonlinearity in transmitters is a serious issue for the goal, because it deteriorates the quality of signal and lowers the system performance. This paper studies a post-reception nonlinear compensation (PRC) schemes consisting of frequency domain equalizers (FDEs) and a blind nonlinear compensator (BNLC). A frequency-domain memory nonlinearity modeling approach is employed, and several PRC configurations with FDEs and BNLC are evaluated through computer simulations. It is concluded that the proposed PRC schemes can effectively compensate memory nonlinearity in wideband transmitters via frequency-selective propagation channel. By implementing the PRC in a base station, uplink performance will be enhanced without any additional cost and power consumption in user terminals.

  • Write Variation & Reliability Error Compensation by Layer-Wise Tunable Retraining of Edge FeFET LM-GA CiM

    Shinsei YOSHIKIYO  Naoko MISAWA  Kasidit TOPRASERTPONG  Shinichi TAKAGI  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-C No:7
      Page(s):
    352-364

    This paper proposes a layer-wise tunable retraining method for edge FeFET Computation-in-Memory (CiM) to compensate the accuracy degradation of neural network (NN) by FeFET device errors. The proposed retraining can tune the number of layers to be retrained to reduce inference accuracy degradation by errors that occur after retraining. Weights of the original NN model, accurately trained in cloud data center, are written into edge FeFET CiM. The written weights are changed by FeFET device errors in the field. By partially retraining the written NN model, the proposed method combines the error-affected layers of NN model with the retrained layers. The inference accuracy is thus recovered. After retraining, the retrained layers are re-written to CiM and affected by device errors again. In the evaluation, at first, the recovery capability of NN model by partial retraining is analyzed. Then the inference accuracy after re-writing is evaluated. Recovery capability is evaluated with non-volatile memory (NVM) typical errors: normal distribution, uniform shift, and bit-inversion. For all types of errors, more than 50% of the degraded percentage of inference accuracy is recovered by retraining only the final fully-connected (FC) layer of Resnet-32. To simulate FeFET Local-Multiply and Global-accumulate (LM-GA) CiM, recovery capability is also evaluated with FeFET errors modeled based on FeFET measurements. Retraining only FC layer achieves recovery rate of up to 53%, 66%, and 72% for FeFET write variation, read-disturb, and data-retention, respectively. In addition, just adding two more retraining layers improves recovery rate by 20-30%. In order to tune the number of retraining layers, inference accuracy after re-writing is evaluated by simulating the errors that occur after retraining. When NVM typical errors are injected, it is optimal to retrain FC layer and 3-6 convolution layers of Resnet-32. The optimal number of layers can be increased or decreased depending on the balance between the size of errors before retraining and errors after retraining.

  • Non-Stop Microprocessor for Fault-Tolerant Real-Time Systems Open Access

    Shota NAKABEPPU  Nobuyuki YAMASAKI  

     
    PAPER

      Pubricized:
    2023/01/25
      Vol:
    E106-C No:7
      Page(s):
    365-381

    It is very important to design an embedded real-time system as a fault-tolerant system to ensure dependability. In particular, when a power failure occurs, restart processing after power restoration is required in a real-time system using a conventional processor. Even if power is restored quickly, the restart process takes a long time and causes deadline misses. In order to design a fault-tolerant real-time system, it is necessary to have a processor that can resume operation in a short time immediately after power is restored, even if a power failure occurs at any time. Since current embedded real-time systems are required to execute many tasks, high schedulability for high throughput is also important. This paper proposes a non-stop microprocessor architecture to achieve a fault-tolerant real-time system. The non-stop microprocessor is designed so as to resume normal operation even if a power failure occurs at any time, to achieve little performance degradation for high schedulability even if checkpoint creations and restorations are performed many times, to control flexibly non-volatile devices through software configuration, and to ensure data consistency no matter when a checkpoint restoration is performed. The evaluation shows that the non-stop microprocessor can restore a checkpoint within 5µsec and almost hide the overhead of checkpoint creations. The non-stop microprocessor with such capabilities will be an essential component of a fault-tolerant real-time system with high schedulability.

  • Crosstalk Analysis and Countermeasures of High-Bandwidth 3D-Stacked Memory Using Multi-Hop Inductive Coupling Interface Open Access

    Kota SHIBA  Atsutake KOSUGE  Mototsugu HAMADA  Tadahiro KURODA  

     
    BRIEF PAPER

      Pubricized:
    2022/09/30
      Vol:
    E106-C No:7
      Page(s):
    391-394

    This paper describes an in-depth analysis of crosstalk in a high-bandwidth 3D-stacked memory using a multi-hop inductive coupling interface and proposes two countermeasures. This work analyzes the crosstalk among seven stacked chips using a 3D electromagnetic (EM) simulator. The detailed analysis reveals two main crosstalk sources: concentric coils and adjacent coils. To suppress these crosstalks, this paper proposes two corresponding countermeasures: shorted coils and 8-shaped coils. The combination of these coils improves area efficiency by a factor of 4 in simulation. The proposed methods enable an area-efficient inductive coupling interface for high-bandwidth stacked memory.

1-20hit(653hit)