The search functionality is under construction.

Author Search Result

[Author] Fei ZHANG(19hit)

1-19hit
  • Deep Discriminative Supervised Hashing via Siamese Network

    Yang LI  Zhuang MIAO  Jiabao WANG  Yafei ZHANG  Hang LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/09/12
      Vol:
    E100-D No:12
      Page(s):
    3036-3040

    The latest deep hashing methods perform hash codes learning and image feature learning simultaneously by using pairwise or triplet labels. However, generating all possible pairwise or triplet labels from the training dataset can quickly become intractable, where the majority of those samples may produce small costs, resulting in slow convergence. In this letter, we propose a novel deep discriminative supervised hashing method, called DDSH, which directly learns hash codes based on a new combined loss function. Compared to previous methods, our method can take full advantages of the annotated data in terms of pairwise similarity and image identities. Extensive experiments on standard benchmarks demonstrate that our method preserves the instance-level similarity and outperforms state-of-the-art deep hashing methods in the image retrieval application. Remarkably, our 16-bits binary representation can surpass the performance of existing 48-bits binary representation, which demonstrates that our method can effectively improve the speed and precision of large scale image retrieval systems.

  • An Improved GPS/RFID Integration Method Based on Sequential Iterated Reduced Sigma Point Kalman Filter

    Jing PENG  Falin WU  Ming ZHU  Feixue WANG  Kefei ZHANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E95-B No:7
      Page(s):
    2433-2441

    In this paper, an improved GPS/RFID integration method based on Sequential Iterated Reduced Sigma Point Kalman Filter (SIRSPKF) is proposed for vehicle navigation applications. It is applied to improve the accuracy, reliability and availability of satellite positioning in the areas where the satellite visibility is limited. An RFID system is employed to assist the GPS system in achieving high accuracy positioning. Further, to reduce the measurement noise and decrease the computational complexity caused by the integrated GPS/RFID, SIRSPKF is investigated as the dominant filter for the proposed integration. Performances and computational complexities of different integration scenarios with different filters are compared in this paper. A field experiment shows that both accuracy and availability of positioning can be improved significantly by this low-cost GPS/RFID integration method with the reduced computational load.

  • Deep Correlation Tracking with Backtracking

    Yulong XU  Yang LI  Jiabao WANG  Zhuang MIAO  Hang LI  Yafei ZHANG  Gang TAO  

     
    LETTER-Vision

      Vol:
    E100-A No:7
      Page(s):
    1601-1605

    Feature extractor is an important component of a tracker and the convolutional neural networks (CNNs) have demonstrated excellent performance in visual tracking. However, the CNN features cannot perform well under conditions of low illumination. To address this issue, we propose a novel deep correlation tracker with backtracking, which consists of target translation, backtracking and scale estimation. We employ four correlation filters, one with a histogram of oriented gradient (HOG) descriptor and the other three with the CNN features to estimate the translation. In particular, we propose a backtracking algorithm to reconfirm the translation location. Comprehensive experiments are performed on a large-scale challenging benchmark dataset. And the results show that the proposed algorithm outperforms state-of-the-art methods in accuracy and robustness.

  • Outage Performance Analysis of a Multiuser Two-Way Relaying Network with Feedback Delay

    Jie YANG  Xiaofei ZHANG  Kai YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2052-2056

    The outage performance of a multiuser two-way amplify-and-forward (AF) relaying network, where N-th best selection scheme with the consideration to the feedback delay, is investigated. Specifically, the new closed-form expressions for cumulative distribution function (CDF) and outage probability (OP) are presented over time varying Rayleigh-fading channels. Furthermore, simple approximate OP is derived assessing the high signal-to-noise-ratio (SNR), which identifies the diversity behavior. Numerical results show excellent agreement with theoretical results.

  • Digital Image Stabilization Based on Correction for Basic Reference Frame Jitter

    Yuefei ZHANG  Mei XIE  Ling MAO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3149-3152

    In this letter, we first study the impact of the basic reference frame jitter on the digital image stabilization. Next, a method for stabilizing the digital image sequence based on the correction for basic reference frame jitter is proposed. The experimental results show that our proposed method can effectively decrease the excessive undefined areas in the stable image sequence resulting from the basic reference frame jitter.

  • Compact Analytical Threshold Voltage Model of Strained Gate-All-Around MOSFET Fabricated on Si1-xGex Virtual Substrate

    Yefei ZHANG  Zunchao LI  Chuang WANG  Feng LIANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:2
      Page(s):
    302-307

    In this paper, an analytical threshold voltage model of the strained gate-all-around MOSFET fabricated on the Si1-xGex virtual substrate is presented by solving the two-dimensional Poisson equation. The impact of key parameters such as the strain, channel length, gate oxide thickness and radius of the silicon cylinder on the threshold voltage has been investigated. It has been demonstrated that the threshold voltage decreases as the strain in the channel increases. The threshold voltage roll-off becomes severe when increasing the Ge content in the Si1-xGex virtual substrate. The model is found to tally well with the device simulator.

  • Matrix Completion ESPRIT for DOA Estimation Using Nonuniform Linear Array Open Access

    Hongbing LI  Qunfei ZHANG  Weike FENG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2253-2259

    A novel matrix completion ESPRIT (MC-ESPRIT) algorithm is proposed to estimate the direction of arrival (DOA) with nonuniform linear arrays (NLA). By exploiting the matrix completion theory and the characters of Hankel matrix, the received data matrix of an NLA is tranformed into a two-fold Hankel matrix, which is a treatable for matrix completion. Then the decision variable can be reconstructed by the inexact augmented Lagrange multiplier method. This approach yields a completed data matrix, which is the same as the data matrix of uniform linear array (ULA). Thus the ESPRIT-type algorithm can be used to estimate the DOA. The MC-ESPRIT could resolve more signals than the MUSIC-type algorithms with NLA. Furthermore, the proposed algorithm does not need to divide the field of view of the array compared to the existing virtual interpolated array ESPRIT (VIA-ESPRIT). Simulation results confirm the effectiveness of MC-ESPRIT.

  • Feature Adaptive Correlation Tracking

    Yulong XU  Yang LI  Jiabao WANG  Zhuang MIAO  Hang LI  Yafei ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/11/28
      Vol:
    E100-D No:3
      Page(s):
    594-597

    Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.

  • SVM Based Intrusion Detection Method with Nonlinear Scaling and Feature Selection

    Fei ZHANG  Peining ZHEN  Dishan JING  Xiaotang TANG  Hai-Bao CHEN  Jie YAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/14
      Vol:
    E105-D No:5
      Page(s):
    1024-1038

    Intrusion is one of major security issues of internet with the rapid growth in smart and Internet of Thing (IoT) devices, and it becomes important to detect attacks and set out alarm in IoT systems. In this paper, the support vector machine (SVM) and principal component analysis (PCA) based method is used to detect attacks in smart IoT systems. SVM with nonlinear scheme is used for intrusion classification and PCA is adopted for feature selection on the training and testing datasets. Experiments on the NSL-KDD dataset show that the test accuracy of the proposed method can reach 82.2% with 16 features selected from PCA for binary-classification which is almost the same as the result obtained with all the 41 features; and the test accuracy can achieve 78.3% with 29 features selected from PCA for multi-classification while 79.6% without feature selection. The Denial of Service (DoS) attack detection accuracy of the proposed method can achieve 8.8% improvement compared with existing artificial neural network based method.

  • An Optimized Auto-tuning Digital DC--DC Converter Based on Linear-Non-Linear and Predictive PID

    Chuang WANG  Zunchao LI  Cheng LUO  Lijuan ZHAO  Yefei ZHANG  Feng LIANG  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    813-819

    A novel auto-tuning digital DC--DC converter is presented. In order to reduce the recovery time and undershoot, the auto-tuning control combines LnL, conventional PID and a predictive PID with a configurable predictive coefficient. A switch module is used to select an algorithm from the three control algorithms, according to the difference between the error signal and the two initially predefined thresholds. The detection and control logic is designed for both window delay line ADC and $Sigma Delta$ DPWM to correct the delay deviation. When the output of the converter exceeds the quantization range, the digital output of ADC is set at 0 or 1, and the delay line stops working to reduce power consumption. Theoretical analysis and simulations in the CSMC CMOS 0.5,$mu$m process are carried out to verify the proposed DC--DC converter. It is found that the converter achieves a power efficiency of more than 90% at heavy load, and reduces the recovery time and undershoot.

  • Deep Attention Residual Hashing

    Yang LI  Zhuang MIAO  Ming HE  Yafei ZHANG  Hang LI  

     
    LETTER-Image

      Vol:
    E101-A No:3
      Page(s):
    654-657

    How to represent images into highly compact binary codes is a critical issue in many computer vision tasks. Existing deep hashing methods typically focus on designing loss function by using pairwise or triplet labels. However, these methods ignore the attention mechanism in the human visual system. In this letter, we propose a novel Deep Attention Residual Hashing (DARH) method, which directly learns hash codes based on a simple pointwise classification loss function. Compared to previous methods, our method does not need to generate all possible pairwise or triplet labels from the training dataset. Specifically, we develop a new type of attention layer which can learn human eye fixation and significantly improves the representation ability of hash codes. In addition, we embedded the attention layer into the residual network to simultaneously learn discriminative image features and hash codes in an end-to-end manner. Extensive experiments on standard benchmarks demonstrate that our method preserves the instance-level similarity and outperforms state-of-the-art deep hashing methods in the image retrieval application.

  • Combining Color Features for Real-Time Correlation Tracking

    Yulong XU  Zhuang MIAO  Jiabao WANG  Yang LI  Hang LI  Yafei ZHANG  Weiguang XU  Zhisong PAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/10/04
      Vol:
    E100-D No:1
      Page(s):
    225-228

    Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time.

  • Object Tracking with Embedded Deformable Parts in Dynamic Conditional Random Fields

    Suofei ZHANG  Zhixin SUN  Xu CHENG  Lin ZHOU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/19
      Vol:
    E99-D No:4
      Page(s):
    1268-1271

    This work presents an object tracking framework which is based on integration of Deformable Part based Models (DPMs) and Dynamic Conditional Random Fields (DCRF). In this framework, we propose a DCRF based novel way to track an object and its details on multiple resolutions simultaneously. Meanwhile, we tackle drastic variations in target appearance such as pose, view, scale and illumination changes with DPMs. To embed DPMs into DCRF, we design specific temporal potential functions between vertices by explicitly formulating deformation and partial occlusion respectively. Furthermore, temporal transition functions between mixture models bring higher robustness to perspective and pose changes. To evaluate the efficacy of our proposed method, quantitative tests on six challenging video sequences are conducted and the results are analyzed. Experimental results indicate that the method effectively addresses serious problems in object tracking and performs favorably against state-of-the-art trackers.

  • Process Scheduling Based Memory Energy Management for Multi-Core Mobile Devices

    Tiefei ZHANG  Tianzhou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E95-A No:10
      Page(s):
    1700-1707

    The energy consumption is always a serious problem for mobile devices powered by battery. As the capacity and density of off-chip memory continuous to scale, its energy consumption accounts for a considerable amount of the whole system energy. There are therefore strong demands for energy efficient techniques towards memory system. Different from previous works, we explore the different power management modes of the off-chip memory by process scheduling for the multi-core mobile devices. In particular, we schedule the processes based on their memory access characteristics to maximize the number of the memory banks being in low power mode. We propose a fast approximation algorithm to solve the scheduling process problem for the dual-core mobile device. And for those equipped with more than two cores, we prove that the scheduling process problem is NP-Hard, and propose two heuristic algorithms. The proposed algorithms are evaluated through a series of experiments, for which we have encouraging results.

  • Performance Analysis of Multiuser Relay Networks with Feedback Delay

    Jie YANG  Xiaofei ZHANG  Kai YANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:8
      Page(s):
    1770-1779

    In this paper, we analyze the performance of a dual-hop multiuser amplify-and-forward (AF) relay network with the effect of the feedback delay, where the source and each of the K destinations are equipped with Nt and Nr antennas respectively, and the relay is equipped with a single antenna. In the relay network, multi-antenna and multiuser diversities are guaranteed via beamforming and opportunistic scheduling, respectively. To examine the impact of delayed feedback, the new exact analytical expressions for the outage probability (OP) and symbol error rate (SER) are derived in closed-form over Rayleigh fading channel, which are useful for a large number of modulation schemes. In addition, we present the asymptotic expressions for OP and SER in the high signal-to-noise ratio (SNR) regime, from which we gain an insight into the system performance with deriving the diversity order and array gain. Moreover, based on the asymptotic expressions, we determine power allocation among the network nodes such that the OP is minimized. The analytical expressions are validated by Monte-Carlo simulations.

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • Inequality-Constrained RPCA for Shadow Removal and Foreground Detection

    Hang LI  Yafei ZHANG  Jiabao WANG  Yulong XU  Yang LI  Zhisong PAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/03/02
      Vol:
    E98-D No:6
      Page(s):
    1256-1259

    State-of-the-art background subtraction and foreground detection methods still face a variety of challenges, including illumination changes, camouflage, dynamic backgrounds, shadows, intermittent object motion. Detection of foreground elements via the robust principal component analysis (RPCA) method and its extensions based on low-rank and sparse structures have been conducted to achieve good performance in many scenes of the datasets, such as Changedetection.net (CDnet); however, the conventional RPCA method does not handle shadows well. To address this issue, we propose an approach that considers observed video data as the sum of three parts, namely a row-rank background, sparse moving objects and moving shadows. Next, we cast inequality constraints on the basic RPCA model and use an alternating direction method of multipliers framework combined with Rockafeller multipliers to derive a closed-form solution of the shadow matrix sub-problem. Our experiments have demonstrated that our method works effectively on challenging datasets that contain shadows.

  • Object Tracking by Unified Semantic Knowledge and Instance Features

    Suofei ZHANG  Bin KANG  Lin ZHOU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/11/30
      Vol:
    E102-D No:3
      Page(s):
    680-683

    Instance features based deep learning methods prompt the performances of high speed object tracking systems by directly comparing target with its template during training and tracking. However, from the perspective of human vision system, prior knowledge of target also plays key role during the process of tracking. To integrate both semantic knowledge and instance features, we propose a convolutional network based object tracking framework to simultaneously output bounding boxes based on different prior knowledge as well as confidences of corresponding Assumptions. Experimental results show that our proposed approach retains both higher accuracy and efficiency than other leading methods on tracking tasks covering most daily objects.

  • Noncoherent Demodulation and Decoding via Polynomial Zeros Modulation for Pilot-Free Short Packet Transmissions over Multipath Fading Channels

    Yaping SUN  Gaoqi DOU  Hao WANG  Yufei ZHANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    213-220

    With the advent of the Internet of Things (IoT), short packet transmissions will dominate the future wireless communication. However, traditional coherent demodulation and channel estimation schemes require large pilot overhead, which may be highly inefficient for short packets in multipath fading scenarios. This paper proposes a novel pilot-free short packet structure based on the association of modulation on conjugate-reciprocal zeros (MOCZ) and tail-biting convolutional codes (TBCC), where a noncoherent demodulation and decoding scheme is designed without the channel state information (CSI) at the transceivers. We provide a construction method of constellation sets and demodulation rule for M-ary MOCZ. By deriving low complexity log-likelihood ratios (LLR) for M-ary MOCZ, we offer a reasonable balance between energy and bandwidth efficiency for joint coding and modulation scheme. Simulation results show that our proposed scheme can attain significant performance and throughput gains compared to the pilot-based coherent modulation scheme over multipath fading channels.