The search functionality is under construction.

Author Search Result

[Author] Masahiro WATANABE(7hit)

1-7hit
  • Different Characteristics of Metal (CoSi2)/Insulator (CaF2) Resonant Tunneling Transistors Depending on Base Quantum-Well Layer

    Takashi SUEMASU  Yoshifumi KOHNO  Nobuhiro SUZUKI  Masahiro WATANABE  Masahiro ASADA  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1450-1454

    The transistor action with negative differential resistance (NDR) of a nanometer-thick metal (CoSi2)/insulator (CaF2) resonant tunneling transistor is discussed for two transistor structures. These transistors are composed of metal-insulator (M-I) heterostructures with two metallic (CoSi2) quantum wells and three insulator (CaF2) barriers grown on an n-Si (lll) substrate. One of the two structures has the base terminal connected to one of the quantum wells next to the collector, and the other, to one next to the emitter. Although base resistance is high maybe due to the damage caused during the fabrication process, the two transistors show different characteristics, as expected theoretically. Transfer efficiency α (= IC/IE) close to unity was obtained at 77 K for electrons through the resonant levels in M-I heterostructures.

  • A Behavioral Specification of Imperative Programming Languages

    Masaki NAKAMURA  Masahiro WATANABE  Kokichi FUTATSUGI  

     
    PAPER

      Vol:
    E89-A No:6
      Page(s):
    1558-1565

    In this paper, we give a denotational semantics of imperative programming languages as a CafeOBJ behavioral specification. Since CafeOBJ is an executable algebraic specification language, not only execution of programs but also semi-automatic verification of programs properties can be done. We first describe an imperative programming language with integer and Boolean types, called IPL. Next we discuss about how to extend IPL, that is, IPL with user-defined types. We give a notion of equivalent programs, which is defined by using the notion of the behavioral equivalence of behavioral specifications. We show a sufficient condition for the equivalence relation of programs, which reduces the task to prove programs to be equivalent.

  • A Link Heterogeneity-Aware On-Demand Routing (LHAOR) Protocol Utilizing Local Update and RSSI Information

    Suhua TANG  Bing ZHANG  Masahiro WATANABE  Shinsuke TANAKA  

     
    PAPER

      Vol:
    E88-B No:9
      Page(s):
    3588-3597

    Many routing protocols have been proposed for mobile ad hoc networks. Among these protocols, the on-demand routing protocols are very attractive because they have low routing overhead. However, few of the existing on-demand routing protocols have considered the link heterogeneity, such as the different communication rate, different Packet Error Ratio (PER). As a result, the routes tend to have the shortest hop count and contain weak links, which usually provide low performance and are susceptible to breaks in the presence of mobility. In this paper, we analyze the existing on-demand routing protocols and propose a Link Heterogeneity Aware On-demand Routing (LHAOR) protocol, where the link quality and mobility are considered. Specifically, the Local Update (LU) is proposed and the link metric is inversely related with the Received Signal Strength Indicator (RSSI). By using the LU method and RSSI information, the routes adapt to the topology variation and link quality changes, and reach the local optimum quickly, which contains strong links and has a small metric. Simulation and experiment results show that our LHAOR protocol achieves much higher performance than the classical on-demand routing protocols.

  • Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics

    Long LIU  Gensai TEI  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/07/08
      Vol:
    E106-C No:1
      Page(s):
    1-6

    We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.

  • Proposal and Analysis of Quantum-Interference High-Speed Electron Devices Using Metal-Insulator Heterostructure

    Tomoaki SAKAGUCHI  Masahiro WATANABE  Masahiro ASADA  

     
    PAPER-Quantum Electronics

      Vol:
    E74-C No:10
      Page(s):
    3326-3333

    A novel transistor, introducing metal and iusulator and using the quantum interference of hot electrons in the conduction band of an insulator as the operation principle, is proposed. The metal-insulator combination contributes to the reduction of the device size and obtaining high current density, low resistivity, and small capacitance, which result in the decrease of the response time of the device. Also, since this combination has the extremely high conduction band discontinuity, strong quantum interference can be obtained. The static I-V characteristics are analyzed and it is shown that there are multiple peaks useful for a variety of signal processing and logic applications. In addition, since the gradient between each peak and valley in the characteristics is steep, the device used as an amplifier has a high transconductance which contributes to the reduction of the response time. We show the possibility of subpicosecond response (0.2 ps) of this device theoretically.

  • Design and Analysis of Si/CaF2 Near-Infrared (λ∼1.7µm) DFB Quantum Cascade Laser for Silicon Photonics

    Gensai TEI  Long LIU  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/11/04
      Vol:
    E106-C No:5
      Page(s):
    157-164

    We have designed a near-infrared wavelength Si/CaF2 DFB quantum cascade laser and investigated the possibility of single-mode laser oscillation by analysis of the propagation mode, gain, scattering time of Si quantum well, and threshold current density. As the waveguide and resonator, a slab-type waveguide structure with a Si/CaF2 active layer sandwiched by SiO2 on a Si (111) substrate and a grating structure in an n-Si conducting layer were assumed. From the results of optical propagation mode analysis, by assuming a λ/4-shifted bragg waveguide structure, it was found that the single vertical and horizontal TM mode propagation is possible at the designed wavelength of 1.70µm. In addition, a design of the active layer is proposed and its current injection capability is roughly estimated to be 25.1kA/cm2, which is larger than required threshold current density of 1.4kA/cm2 calculated by combining analysis results of the scattering time, population inversion, gain of quantum cascade lasers, and coupling theory of a Bragg waveguide. The results strongly indicate the possibility of single-mode laser oscillation.

  • Visible Light Emission from Nanocrystalline Silicon Embedded in CaF2 Layers on Si(111)

    Masahiro WATANABE  Fumitaka IIZUKA  Masahiro ASADA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1562-1567

    We report on the formation technique and the first observation of visible light emission from silicon nanoparticles (<10nm) embedded in CaF22 Iayers grown on Si(111) substrates by using codeposition of Si and CaF2. It is shown that the size and density of silicon particles embedded in the CaF2 layer can be controlled by varying the substrate temperature and the evaporation rates of CaF2 and Si. The photoluminescence (PL) spectra of Si nanoparticles embedded in CaF2 thin films were investigated. The blue or green light emissions obtained using a He-Cd laser (λ=325nm) could be seen with the naked eye even at room temperature for the first time. It is shown that the PL intensity strongly depends on growth conditions such as the Si:CaF2 flux ratio and the growth temperature. The PL spectra were also changed by in situ annealing process. These phenomena can be explained qualitatively by the quantum size effect of Si nanoparticles embedded in CaF2 barriers.