The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shen-Iuan LIU(10hit)

1-10hit
  • A Wide-Range Multiphase Delay-Locked Loop Using Mixed-Mode VCDLs

    Rong-Jyi YANG  Shen-Iuan LIU  

     
    PAPER-PLL

      Vol:
    E88-C No:6
      Page(s):
    1248-1252

    A wide-range multiphase delay-locked loop (DLL) using mixed-mode voltage-controlled delay lines (VCDLs) is presented. An edge-triggered duty cycle corrector is introduced to generate output clocks with 50% duty cycle. This DLL using an analog 3-states phase-frequency detector (PFD) and the proposed digital PFD can achieve low jitter operation over a wide frequency range without harmonic locking problems. It has been fabricated in a standard 0.25-µm CMOS technology and occupies a core area of 1 mm2 including the on-chip regulator and loop filter. For reference clocks from 20 MHz to 550 MHz, all the measured rms and peak-to-peak jitters are below 10 ps and 78 ps, respectively.

  • Low-Voltage CMOS Voltage-Mode Divider and Its Application

    Weihsing LIU  Shen-Iuan LIU  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    330-334

    A CMOS voltage-mode divider, which can operate for low supply voltage and low power dissipation, is presented in this paper. The proposed voltage-mode divider can be used to realize a pseudo-exponential function generator. The experimental results of the proposed voltage-mode divider show that, under the supply voltage VDD=2.5 V, the linearity error is less than 1.18% and the power consumption is only 102 µW. Also the proposed pseudo-exponential function generator exhibits a 15 dB output dynamic range and the linear error is less than1.54%. Both the proposed circuits have been fabricated in a 0.5 µm N-well CMOS 2P2M process. The proposed circuits are expected to be useful in analog signal processing applications.

  • A Multi-Band Burst-Mode Clock and Data Recovery Circuit

    Che-Fu LIANG  Sy-Chyuan HWU  Shen-Iuan LIU  

     
    PAPER-Analog and Communications

      Vol:
    E90-C No:4
      Page(s):
    802-810

    A multi-band burst-mode clock and data recovery (BMCDR) circuit is presented. The available data rates are 2488.32 Mbps, 1244.16 Mbps, 622.08 Mbps, and 155.52 Mbps, which are specified in a gigabit-capable passive optical network (GPON) [1]. A half-rate and low-jitter gated voltage-controlled oscillator (GVCO) and a phase-controlled frequency divider are used to achieve the multi-band reception. The proposed BMCDR circuit has been fabricated in a 0.18 µm CMOS process. Its active area is 0.41 mm2 and consumes 70 mW including I/O buffers from a 1.8 V supply.

  • Low Voltage and Low Power CMOS Exponential-Control Variable-Gain Amplifier

    Weihsing LIU  Shen-Iuan LIU  

     
    LETTER-Circuit Theory

      Vol:
    E87-A No:4
      Page(s):
    952-954

    A compact, low voltage, low power and wide output operating range CMOS exponential-control variable-gain amplifier has been presented. The gain control range of the proposed variable-gain amplifier can be about 50.7 dB while the maximum linearity error is about -1.09%. For the case of supply voltage VDD = 2 V, the maximum power dissipation is only 1.6 µW. The proposed circuit has been fabricated in a 0.5 µm 2p2m N-well CMOS process. Experimental results are given to confirm the feasibility of the proposed variable gain amplifier. The proposed circuit is expected to be useful in analog signal processing applications.

  • A Fully Integrated 1.7-3.125 Gbps Clock and Data Recovery Circuit Using a Gated Frequency Detector

    Rong-Jyi YANG  Shen-Iuan LIU  

     
    PAPER

      Vol:
    E88-C No:8
      Page(s):
    1726-1730

    A fully integrated clock and data recovery circuit with the proposed gated frequency detector (GFD) is presented. It has been realized in a standard 0.25-µm CMOS technology. The proposed voltage-controlled oscillator (VCO) can achieve wide operation range and reasonable conversion gain by employing the analog/digital dual loop architecture. The characteristics of small VCO gain can help to reduce loop bandwidth without enlarge the capacitors and relax the constraint on choosing the loop parameter to reduce the size of the on-chip capacitor. The proposed GFD will make the frequency lock time fixed and can avoid the harmonic locking problem in digital domain for wide data rate operations. All measured BERs are less than 10-12 with the data rate from 1.7 Gbps to 3.125 Gbps.

  • All-Digital Clock Deskew Buffer with Variable Duty Cycles

    Shao-Ku KAO  Shen-Iuan LIU  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    753-760

    An all-digital clock deskew buffer with variable duty cycles is presented. The proposed circuit aligns the input and output clocks with two cycles. A pulsewidth detector using the sequential time-to-digital conversion is employed to detect the duty cycle. The output clock with adjustable duty cycles can be generated. The proposed circuit has been fabricated in a 0.35 µm CMOS technology. The measured duty cycle of the output clock can be adjusted from 30% to 70% in steps of 10%. The operation frequency range is from 400 MHz to 600 MHz.

  • Low-Voltage and Low-Power CMOS Voltage-to-Current Converter

    Weihsing LIU  Shen-Iuan LIU  

     
    LETTER

      Vol:
    E87-C No:6
      Page(s):
    1029-1032

    A CMOS voltage-to-current converter in weak inversion is presented in this Letter. It can operate for low supply voltage and its power consumption is also low. As the input voltage varies from -0.15 V to 0.15 V, the measured maximum linearity error for the proposed voltage-to-current converter, is about 3.35%. Its power consumption is only 26 µW under the supply voltage of 2 V. The proposed voltage-to-current converter has been fabricated in a 0.5 µm N-well CMOS 2P2M process. The proposed circuit is expected to be useful in analog signal processing applications.

  • A 2.4 GHz Low Voltage CMOS Down-Conversion Double-Balanced Mixer

    Chih-Chun TANG  Chia-Hsin WU  Wu-Sheng FENG  Shen-Iuan LIU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:8
      Page(s):
    1084-1091

    In this paper, a CMOS down-conversion double-balanced mixer is presented with the modified low voltage design technique. The frequencies of the radio frequency (RF) signal, local oscillator (LO) and intermediate frequency (IF) are 2.4 GHz, 2.3 GHz and 100 MHz, respectively. Measurement results of the proposed mixer exhibit 6.7 dB of conversion gain, -18 dBm of input 1 dB compression point (P-1 dB), -8 dBm of input-referred third-order intercept point (IIP3), and 14.7 dB single-side band (SSB) noise figure (NF) while applying -8 dBm LO power and consumes 3.3 mA from 1.8 V supply voltage. It can provide 0.7 dB conversion gain when the supply voltage reduces to 1.3 V. This mixer was fabricated in a 0.35 µm 1P4M standard digital CMOS process and the die size is 1.5 1.1 mm2.

  • CMOS Tunable 1/x Circuit and Its Applications

    Weihsing LIU  Shen-Iuan LIU  

     
    LETTER-Circuit Theory

      Vol:
    E86-A No:7
      Page(s):
    1896-1899

    A new CMOS 1/x circuit is presented in this letter. The output amplitude of the proposed circuit can be adjusted by a bias current. The proposed circuit can be used to realize a current-to-voltage converter and a current-mode divider. The proposed circuits have been fabricated in a 0.5 µm CMOS process. Experimental results show that under the linear error less than 1%, the input range of the proposed 1/x circuit can be up to 1.5 V for the supply voltages of 1.5 V and the power dissipation is 0.24 mW. The experimental results are given to demonstrate the proposed circuits.

  • A 1 V Phase Locked Loop with Leakage Compensation in 0.13 µm CMOS Technology

    Chi-Nan CHUANG  Shen-Iuan LIU  

     
    PAPER-Low Power Techniques

      Vol:
    E89-C No:3
      Page(s):
    295-299

    In deep sub-micrometer CMOS process, owing to the thin gate oxide and small subthreshold voltage, the leakage current becomes more and more serious. The leakage current has made the impact on phase-locked loops (PLLs). In this paper, the compensation circuits are presented to reduce the leakage current on the charge pump circuit and the MOS capacitor as the loop filter. The proposed circuit has been fabricated in 0.13-µm CMOS process. The power consumption is 3 mW and the die area is 0.270.3 mm2.