1-3hit |
Zhaolin YAO Xinyao MA Yijun WANG Xu ZHANG Ming LIU Weihua PEI Hongda CHEN
A new hybrid brain-computer interface (BCI), which is based on sequential controls by eye tracking and steady-state visual evoked potentials (SSVEPs), has been proposed for high-speed spelling in virtual reality (VR) with a 40-target virtual keyboard. During target selection, gaze point was first detected by an eye-tracking accessory. A 4-target block was then selected for further target selection by a 4-class SSVEP BCI. The system can type at a speed of 1.25 character/sec in a cue-guided target selection task. Online experiments on three subjects achieved an averaged information transfer rate (ITR) of 360.7 bits/min.
Hao WANG Yao MA Jianyong DUAN Li HE Xin LI
Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model’s ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.
Analysis of the trust network proves beneficial to the users in Online Social Networks (OSNs) for decision-making. Since the construction of trust propagation paths connecting unfamiliar users is the preceding work of trust inference, it is vital to find appropriate trust propagation paths. Most of existing trust network discovery algorithms apply the classical exhausted searching approaches with low efficiency and/or just take into account the factors relating to trust without regard to the role of distrust relationships. To solve the issues, we first analyze the trust discounting operators with structure balance theory and validate the distribution characteristics of balanced transitive triads. Then, Maximum Indirect Referral Belief Search (MIRBS) and Minimum Indirect Functional Uncertainty Search (MIFUS) strategies are proposed and followed by the Optimal Trust Inference Path Search (OTIPS) algorithms accordingly on the basis of the bidirectional versions of Dijkstra's algorithm. The comparative experiments of path search, trust inference and edge sign prediction are performed on the Epinions data set. The experimental results show that the proposed algorithm can find the trust inference path with better efficiency and the found paths have better applicability to trust inference.