The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] -block(49hit)

1-20hit(49hit)

  • Quantum Collision Resistance of Double-Block-Length Hashing Open Access

    Shoichi HIROSE  Hidenori KUWAKADO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/04
      Vol:
    E107-A No:9
      Page(s):
    1478-1487

    In 2005, Nandi introduced a class of double-block-length compression functions hπ(x) := (h(x), h(π(x))), where h is a random oracle with an n-bit output and π is a non-cryptographic public permutation. Nandi demonstrated that the collision resistance of hπ is optimal if π has no fixed point in the classical setting. Our study explores the collision resistance of hπ and the Merkle-Damgård hash function using hπ in the quantum random oracle model. Firstly, we reveal that the quantum collision resistance of hπ may not be optimal even if π has no fixed point. If π is an involution, then a colliding pair of inputs can be found for hπ with only O(2n/2) queries by the Grover search. Secondly, we present a sufficient condition on π for the optimal quantum collision resistance of hπ. This condition states that any collision attack needs Ω(22n/3) queries to find a colliding pair of inputs. The proof uses the recent technique of Zhandry’s compressed oracle. Thirdly, we show that the quantum collision resistance of the Merkle-Damgård hash function using hπ can be optimal even if π is an involution. Finally, we discuss the quantum collision resistance of double-block-length compression functions using a block cipher.

  • DORR: A DOR-Based Non-Blocking Optical Router for 3D Photonic Network-on-Chips

    Meaad FADHEL  Huaxi GU  Wenting WEI  

     
    PAPER-Computer System

      Pubricized:
    2021/01/27
      Vol:
    E104-D No:5
      Page(s):
    688-696

    Recently, researchers paid more attention on designing optical routers, since they are essential building blocks of all photonic interconnection architectures. Thus, improving them could lead to a spontaneous improvement in the overall performance of the network. Optical routers suffer from the dilemma of increased insertion loss and crosstalk, which upraises the power consumed as the network scales. In this paper, we propose a new 7×7 non-blocking optical router based on the Dimension Order Routing (DOR) algorithm. Moreover, we develop a method that can ensure the least number of MicroRing Resonators (MRRs) in an optical router. Therefore, by reducing these optical devices, the optical router proposed can decrease the crosstalk and insertion loss of the network. This optical router is evaluated and compared to Ye's router and the optimized crossbar for 3D Mesh network that uses XYZ routing algorithm. Unlike many other proposed routers, this paper evaluates optical routers not only from router level prospective yet also consider the overall network level condition. The appraisals show that our optical router can reduce the worst-case network insertion loss by almost 8.7%, 46.39%, 39.3%, and 41.4% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. Moreover, it decreases the Optical Signal-to-Noise Ratio (OSNR) worst-case by almost 27.92%, 88%, 77%, and 69.6% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively. It also reduces the power consumption by 3.22%, 23.99%, 19.12%, and 20.18% compared to Ye's router, optimized crossbar, optimized universal OR, and Optimized VOTEX, respectively.

  • A Fast Multi-Type Tree Decision Algorithm for VVC Based on Pixel Difference of Sub-Blocks

    Zhi LIU  Mengjun DONG  Mengmeng ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2020/03/02
      Vol:
    E103-A No:6
      Page(s):
    856-859

    In the upcoming video coding standard VVC (Versatile Video Coding, H.266), a new coding block structure named quadtree nested multi-type trees (MTT) has been proposed. Compared with the quadtree structure defined in HEVC (High Efficiency Video Coding), the partition structure of MTT can achieve better coding performance. Since the splitting scheme of a CU (Coding Unit) need to be calculated recursively, the computational complexity is significantly increased. To reduce computational complexity as well as maintain compression performance, a fast multi-type tree decision algorithm is proposed. The application of binary and ternary tree in horizontal or vertical direction is found to be closely related to the characteristics of CU in this paper, and a metric named pixel difference of sub-blocks (SBPD) is defined to measure the characteristics of CU in different splitting type. By comparing the SBPD in horizontal and vertical sub-blocks, the selection of binary and ternary tree can be decided in advance, so as to skip some redundant splitting modes. Experimental results show that compared with the original reference software VTM 4.0, the average time saving of the proposed algorithm is 27% and the BD-rate is only increased by 0.55%.

  • Fast Coding-Mode Selection and CU-Depth Prediction Algorithm Based on Text-Block Recognition for Screen Content Coding

    Mengmeng ZHANG  Ang ZHU  Zhi LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/07/12
      Vol:
    E99-D No:10
      Page(s):
    2651-2655

    As an important extension of high-efficiency video coding (HEVC), screen content coding (SCC) includes various new coding modes, such as Intra Block Copy (IBC), Palette-based coding (Palette), and Adaptive Color Transform (ACT). These new tools have improved screen content encoding performance. This paper proposed a novel and fast algorithm by classifying Code Units (CUs) as text CUs or non-text CUs. For text CUs, the Intra mode was skipped in the compression process, whereas for non-text CUs, the IBC mode was skipped. The current CU depth range was then predicted according to its adjacent left CU depth level. Compared with the reference software HM16.7+SCM5.4, the proposed algorithm reduced encoding time by 23% on average and achieved an approximate 0.44% increase in Bjøntegaard delta bit rate and a negligible peak signal-to-noise ratio loss.

  • Filter Design for IBI Suppression in OFDM Based Filter-and-Forward Relay Beamforming

    Satoshi NAGAI  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:9
      Page(s):
    2072-2080

    In this paper, we consider filter-and-forward relay beamforming using orthogonal frequency-division multiplexing (OFDM) in the presence of inter-block interference (IBI). We propose a filter design method based on a constrained max-min problem, which aims to suppress IBI and also avoid deep nulls in the frequency domain. It is shown that IBI can be suppressed completely owing to the employment of beamforming with multiple relays or multiple receive antennas at each relay when perfect channel state information (CSI) is available. In addition, we modify the proposed method to cover the case where only the partial CSI for relay-receiver channels is available. Numerical simulation results show that the proposed method significantly improves the performance as the number of relays and antennas increases due to spatial diversity, and the modified method can make use of the channel correlation to improve the performance.

  • Threshold Relaxation and Holding Time Limitation Method for Accepting More General Calls under Emergency Trunk Reservation

    Kazuki TANABE  Sumiko MIYATA  Ken-ichi BABA  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1518-1528

    In emergency situations, telecommunication networks become congested due to large numbers of call requests. Also, some infrastructure breaks down, so undamaged communication resources must be utilized more efficiently. Therefore, several lines in telephone exchanges are generally reserved for emergency calls whose users communicate crucial information. The number of lines reserved for emergency calls is determined by a threshold, on a trunk reservation control method. To accept both required emergency calls and more general calls, the traffic intensity of arriving emergency calls should be estimated in advance, and a threshold should be configured so that the number of reserved lines becomes lower than the estimation. Moreover, we propose that the holding time for general calls should be positively limited. By guaranteeing the holding time sufficient for communicating essential information, holding time limitation reduces long-period calls so more general calls are accepted. In this paper, we propose a new CAC method to utilize undamaged communication resources more efficiently during emergencies. Our proposed method accepts more general calls by collaboratively relaxing the threshold of trunk reservation and limiting holding time of general calls. This method is targeted at not only the telephone exchange but also various systems on networks, e.g. base stations of the wireless network or SIP servers. With our method, the threshold is configured in consideration of the ratio of traffic intensities estimated in advance. We modeled the telephone exchange as a queueing loss system and calculated call-blocking rates of both emergency and general calls by using computer simulation. The comparison with the conventional holding time limitation method showed that our proposed method accepts the required number of emergency calls by appropriately relaxing the threshold, while suppressing the increase in call-blocking of general calls.

  • Joint Blind Compensation of Inter-Block Interference and Frequency-Dependent IQ Imbalance

    Xi ZHANG  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E99-A No:1
      Page(s):
    196-198

    In this letter, we propose a blind adaptive algorithm for joint compensation of inter-block interference (IBI) and frequency-dependent IQ imbalance using a single time-domain equalizer. We combine the MERRY algorithm for IBI suppression with the differential constant modulus algorithm to compensate for IQ imbalance. The effectiveness of the proposed algorithm is shown through computer simulations.

  • A Collision Attack on a Double-Block-Length Compression Function Instantiated with 8-/9-Round AES-256

    Jiageng CHEN  Shoichi HIROSE  Hidenori KUWAKADO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    14-21

    This paper presents the first non-trivial collision attack on the double-block-length compression function presented at FSE 2006 instantiated with round-reduced AES-256: f0(h0||h1,M)||f1(h0||h1,M) such that f0(h0||h1, M) = Eh1||M(h0)⊕h0 , f1(h0||h1,M) = Eh1||M(h0⊕c)⊕h0⊕c , where || represents concatenation, E is AES-256 and c is a 16-byte non-zero constant. The proposed attack is a free-start collision attack using the rebound attack proposed by Mendel et al. The success of the proposed attack largely depends on the configuration of the constant c: the number of its non-zero bytes and their positions. For the instantiation with AES-256 reduced from 14 rounds to 8 rounds, it is effective if the constant c has at most four non-zero bytes at some specific positions, and the time complexity is 264 or 296. For the instantiation with AES-256 reduced to 9 rounds, it is effective if the constant c has four non-zero bytes at some specific positions, and the time complexity is 2120. The space complexity is negligible in both cases.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • Joint Channel Shortening and Carrier Frequency Offset Estimation Based on Carrier Nulling Criterion in Downlink OFDMA Systems

    Teruyuki MIYAJIMA  Ryo KUWANA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1014-1016

    In this letter, we present a joint blind adaptive scheme to suppress inter-block interference and estimate a carrier frequency offset (CFO) in downlink OFDMA systems. The proposed scheme is a combination of a channel shortening method and a CFO estimator, both based on the carrier nulling criterion. Simulation results demonstrate the effectiveness of the proposed scheme.

  • A Max-Min Approach to Channel Shortening in OFDM Systems

    Tsukasa TAKAHASHI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E96-A No:1
      Page(s):
    293-295

    In OFDM systems, residual inter-block interference can be suppressed by a time-domain equalizer that blindly shortens the effective length of a channel impulse response. To further improve the performance of blind equalizers, we propose a channel shortening method that attempts to maximize the minimum FFT output power over data subcarriers. Simulation results indicate that the max-min strategy has performance improvement over a conventional channel shortening method.

  • An Improved Channel Shortening Method with Application to MC-CDMA Systems

    Mizuki KOTAKE  Teruyuki MIYAJIMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:11
      Page(s):
    1955-1962

    In block transmissions, inter-block interference (IBI) due to delayed waves exceeding a cyclic prefix severely limits the performance. To suppress IBI in downlink MC-CDMA systems, this paper proposes a novel channel shortening method using a time-domain equalizer. The proposed method minimizes a cost function related to equalizer output autocorrelations without the transmission of training symbols. We prove that the method can shorten a channel and suppress IBI completely. Simulation results show that the proposed method can significantly suppress IBI using relatively less number of received blocks than a conventional method when the number of users is moderate.

  • Equality Based Flow-Admission Control by Using Mixed Loss and Delay System

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E95-B No:3
      Page(s):
    832-844

    We have proposed a novel call admission control (CAC) for maximizing total user satisfaction in a heterogeneous traffic network and showed the effectiveness of our CAC by using an optimal threshold from numerical analysis [1]. In our previous CAC, when a new broadband flow arrives and the total accommodated bandwidth is more than or equal to the threshold, the arriving new broadband flow is rejected. In actual networks, however, users may agree to wait for a certain period until the broadband flow, such as video, begins to play. In this paper, when total accommodated bandwidth is more than or equal to the threshold, arriving broadband flows wait instead of being rejected. As a result, we can greatly improve total user satisfaction.

  • Universally Composable NBAC-Based Fair Voucher Exchange for Mobile Environments

    Kazuki YONEYAMA  Masayuki TERADA  Sadayuki HONGO  Kazuo OHTA  

     
    PAPER

      Vol:
    E94-A No:6
      Page(s):
    1263-1273

    Fair exchange is an important tool to achieve “fairness” of electronic commerce. Several previous schemes satisfy universally composable security which provides security preserving property under complex networks like the Internet. In recent years, as the demand for electronic commerce increases, fair exchange for electronic vouchers (e.g., electronic tickets, moneys, etc.) to obtain services or contents is in the spotlight. The definition of fairness for electronic vouchers is different from that for general electronic items (e.g., the sender must not do duplicate use of exchanged electronic vouchers). However, although there are universally composable schemes for electronic items, there is no previous study for electronic vouchers. In this paper, we introduce a universally composable definition of fair voucher exchange, that is, an ideal functionality of fair voucher exchange. Also, we prove the equivalence between our universally composable definition and the conventional definition for electronic vouchers. Thus, our formulation of the ideal functionality is justified. Finally, we propose a new fair voucher exchange scheme from non-blocking atomic commitment as black-box, which satisfies our security definition and is adequate for mobile environments. By instantiating general building blocks with known practical ones, our scheme can be also practical because it is implemented without trusted third party in usual executions.

  • Flow-Admission Control Based on Equality of Heterogeneous Traffic (Two-Type Flow Model)

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E93-B No:12
      Page(s):
    3564-3576

    Multimedia applications such as video and audio have recently come into much wider use. Because this heterogeneous traffic consumes most of the network's resources, call admission control (CAC) is required to maintain high-quality services. User satisfaction depends on CAC's success in accommodating application flows. Conventional CACs do not take into consideration user satisfaction because their main purpose is to improve the utilization of resources. Moreover, if we assume a service where an ISP provides a "flat-based charging," each user may receive same user satisfaction as a result of users being accommodated in a network, even if each has a different bandwidth. Therefore, we propose a novel CAC to maximize total user satisfaction based on a new philosophy where heterog eneous traffic is treated equally in networks. Theoretical analysis is used to derive optimal thresholds for various traffic configurations with a full search system. We also carried out theoretical numerical analysis to demonstrate the effectiveness of our new CAC. Moreover, we propose a sub-optimal threshold configuration obtained by using an approximation formula to develop practical CAC from these observations. We tested and confirmed that performance could be improved by using sub-optimal parameters.

  • Overlap Frequency-Domain Multiuser Detection for Asynchronous Uplink Multiuser MIMO-OFDM Systems

    Koichi ISHIHARA  Yasushi TAKATORI  Kentaro NISHIMORI  Kazuyasu OKADA  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1582-1588

    In this paper, we propose a novel multiuser detection (MUD) method that is robust against timing offset between wireless terminals (WTs) for the multiuser multiple-input multiple-output (MU-MIMO) orthogonal frequency division multiplexing (OFDM) uplink. In the proposed method, MUD is carried out in the frequency-domain using overlapping fast Fourier transform (FFT) windows. After the inverse FFT (IFFT) operation, the samples obtained at both ends of each FFT window are discarded to suppress the effect of inter-block interference (IBI). Thus, it realizes an MUD regardless of the arrival timing differences of the signals from the WTs. The achievable bit error rate (BER) performance of the proposed MUD method is evaluated by computer simulations in a frequency selective fading channel.

  • Self-Routing Nonblocking WDM Switches Based on Arrayed Waveguide Grating

    Yusuke FUKUSHIMA  Xiaohong JIANG  Achille PATTAVINA  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1173-1182

    Arrayed waveguide grating (AWG) is a promising technology for constructing high-speed large-capacity WDM switches, because it can switch fast, is scalable to large size and consumes little power. To take the full advantage of high-speed AWG, the routing control of a massive AWG-based switch should be as simple as possible. In this paper, we focus on the self-routing design of AWG-based switches with O(1) constant routing complexity and propose a novel construction of self-routing AWG switches that can guarantee the attractive nonblocking property for both the wavelength-to-wavelength and wavelength-to-fiber request models. We also fully analyze the proposed design in terms of its blocking property, hardware cost and crosstalk performance and compare it against traditional designs. It is expected that the proposed construction will be useful for the design and all-optical implementation of future ultra high-speed optical packet/burst switches.

  • Analysis of Two-Phase Path Management Scheme for MPLS Traffic Engineering

    Hitomi TAMURA  Kenji KAWAHARA  Yuji OIE  

     
    PAPER

      Vol:
    E92-B No:1
      Page(s):
    59-67

    Traffic Engineering (TE) is important for improving QoS in forwarding paths by efficient use of network resources. In fact, MPLS allows several detour paths to be (pre-)established for some source-destination pair as well as its primary path of minimum hops. Thus, we focus on a two-phase path management scheme using these two kinds of paths. In the first phase, each primary path is allocated to a flow on a specific source-destination pair if the path is not congested, i.e., if its utilization is less than some predetermined threshold; otherwise, as the second phase, one of the detour paths is allocated randomly if the path is available. Therefore, in this paper, we analytically evaluate this path management scheme by extending the M/M/c/c queueing system, and through some numerical results we investigate the impact of a threshold on the flow-blocking probability. Through some numerical results, we discuss the adequacy of the path management scheme for MPLS-TE.

  • Blind Channel Shortening for Block Transmission of Correlated Signals

    Teruyuki MIYAJIMA  Yoshihisa WATANABE  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3095-3103

    In block transmission systems, blind channel shortening methods are known to be effective to reduce the influence of interblock interference which degrades the performance when the length of a channel impulse response is extremely long. Conventional methods assume that the transmitted signal is uncorrelated; however, this assumption is invalid in practical systems such as OFDM with null carriers and MC-CDMA. In this paper, we consider blind channel shortening methods for block transmissions when the transmitted samples within a block are correlated. First, the channel shortening ability of a conventional method is clarified. Next, a new method which exploits the fact that the transmitted samples in different blocks are uncorrelated is introduced. It is shown that the proposed method can shorten the channel properly under certain conditions. Finally, simulation results of OFDM and MC-CDMA systems are shown to verify the effectiveness of the proposed method compared with a conventional one.

  • Distributed Computing Software Building-Blocks for Ubiquitous Computing Societies

    K.H. (Kane) KIM  

     
    INVITED PAPER

      Vol:
    E91-D No:9
      Page(s):
    2233-2242

    The steady approach of advanced nations toward realization of ubiquitous computing societies has given birth to rapidly growing demands for new-generation distributed computing (DC) applications. Consequently, economic and reliable construction of new-generation DC applications is currently a major issue faced by the software technology research community. What is needed is a new-generation DC software engineering technology which is at least multiple times more effective in constructing new-generation DC applications than the currently practiced technologies are. In particular, this author believes that a new-generation building-block (BB), which is much more advanced than the current-generation DC object that is a small extension of the object model embedded in languages C++, Java, and C#, is needed. Such a BB should enable systematic and economic construction of DC applications that are capable of taking critical actions with 100-microsecond-level or even 10-microsecond-level timing accuracy, fault tolerance, and security enforcement while being easily expandable and taking advantage of all sorts of network connectivity. Some directions considered worth pursuing for finding such BBs are discussed.

1-20hit(49hit)