The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

4501-4520hit(42807hit)

  • A 0.4-1.2GHz Reconfigurable CMOS Power Amplifier for 802.11ah/af Applications

    Jaeyong KO  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    91-94

    A reconfigurable broadband linear power amplifier (PA) for long-range WLAN applications fabricated in a 180nm RF CMOS process is presented here. The proposed reconfigurable in/output matching network provides the PA with broadband capability at the two center frequencies of 0.5GHz and 0.85GHz. The output matching network is realized by a switchable transformer which shows maximum peak passive efficiencies of 65.03% and 73.45% at 0.45GHz and 0.725GHz, respectively. With continuous wave sources, a 1-dB bandwidth (BW1-dB) according to saturated output power is 0.4-1.2GHz, where it shows a minimum output power with a power added efficiency (PAE) of 25.62dBm at 19.65%. Using an adaptive power cell configuration at the common gate transistor, the measured PA under LTE 16-QAM 20MHz (40MHz) signals shows an average output power with a PAE exceeding 20.22 (20.15) dBm with 7.42 (7.35)% at an ACLRE-UTRA of -30dBc, within the BW1-dB.

  • A High Throughput Device-to-Device Wireless Communication System

    Amin JAMALI  Seyed Mostafa SAFAVI HEMAMI  Mehdi BERENJKOUB  Hossein SAIDI  Masih ABEDINI  

     
    PAPER-Information Network

      Pubricized:
    2018/10/15
      Vol:
    E102-D No:1
      Page(s):
    124-132

    Device-to-device (D2D) communication in cellular networks is defined as direct communication between two mobile users without traversing the base station (BS) or core network. D2D communication can occur on the cellular frequencies (i.e., inband) or unlicensed spectrum (i.e., outband). A high capacity IEEE 802.11-based outband device-to-device communication system for cellular networks is introduced in this paper. Transmissions in device-to-device connections are managed using our proposed medium access control (MAC) protocol. In the proposed MAC protocol, backoff window size is adjusted dynamically considering the current network status and utilizing an appropriate transmission attempt rate. We have considered both cases that the request to send/clear to send (RTS/CTS) mechanism is and is not used in our protocol design. Describing mechanisms for guaranteeing quality of service (QoS) and enhancing reliability of the system is another part of our work. Moreover, performance of the system in the presence of channel impairments is investigated analytically and through simulations. Analytical and simulation results demonstrate that our proposed system has high throughput, and it can provide different levels of QoS for its users.

  • A Robot Model That Obeys a Norm of a Human Group by Participating in the Group and Interacting with Its Members

    Yotaro FUSE  Hiroshi TAKENOUCHI  Masataka TOKUMARU  

     
    PAPER-Kansei Information Processing, Affective Information Processing

      Pubricized:
    2018/10/03
      Vol:
    E102-D No:1
      Page(s):
    185-194

    Herein, we proposed a robot model that will obey a norm of a certain group by interacting with the group members. Using this model, a robot system learns the norm of the group as a group member itself. The people with individual differences form a group and a characteristic norm that reflects the group members' personalities. When robots join a group that includes humans, the robots need to obey a characteristic norm: a group norm. We investigated whether the robot system generates a decision-making criterion to obey group norms by learning from interactions through reinforcement learning. In this experiment, human group members and the robot system answer same easy quizzes that could have several vague answers. When the group members answered differently from one another at first, we investigated whether the group members answered the quizzes while considering the group norm. To avoid bias toward the system's answers, one of the participants in a group only obeys the system, whereas the other participants are unaware of the system. Our experiments revealed that the group comprising the participants and the robot system forms group norms. The proposed model enables a social robot to make decisions socially in order to adjust their behaviors to common sense not only in a large human society but also in partial human groups, e.g., local communities. Therefore, we presumed that these robots can join human groups by interacting with its members. To adapt to these groups, these robots adjust their own behaviors. However, further studies are required to reveal whether the robots' answers affect people and whether the participants can form a group norm based on a robot's answer even in a situation wherein the participants recognize that they are interacting in a group that include a real robot. Moreover, some participants in a group do not know that the other participant only obeys the system's decisions and pretends to answer questions to prevent biased answers.

  • Cycle Time Improvement of EtherCAT Networks with Embedded Linux-Based Master

    Hyun-Chul YI  Joon-Young CHOI  

     
    LETTER-Software System

      Pubricized:
    2018/10/11
      Vol:
    E102-D No:1
      Page(s):
    195-197

    We improve the cycle time performance of EtherCAT networks with embedded Linux-based master by developing a Linux Ethernet driver optimized for EtherCAT operation. The Ethernet driver is developed to establish a direct interface between the master module and Ethernet controllers of embedded systems by removing the involvement of Linux network stack and the New API (NAPI) of standard Ethernet drivers. Consequently, it is achieved that the time-consuming memory copy operations are reduced and the process of EtherCAT frames is accelerated. In order to demonstrate the effect of the developed Ethernet driver, we set up EtherCAT networks composed of an embedded Linux-based master and commercial off-the-shelf slaves, and the experimental results confirm that the cycle time performance is significantly improved.

  • Real-Time Head Action Recognition Based on HOF and ELM

    Tie HONG  Yuan Wei LI  Zhi Ying WANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/10/05
      Vol:
    E102-D No:1
      Page(s):
    206-209

    Head action recognition, as a specific problem in action recognition, has been studied in this paper. Different from most existing researches, our head action recognition problem is specifically defined for the requirement of some practical applications. Based on our definition, we build a corresponding head action dataset which contains many challenging cases. For action recognition, we proposed a real-time head action recognition framework based on HOF and ELM. The framework consists of face detection based ROI determination, HOF feature extraction in ROI, and ELM based action prediction. Experiments show that our method achieves good accuracy and is efficient enough for practical applications.

  • Symmetric Decomposition of Convolution Kernels

    Jun OU  Yujian LI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/10/18
      Vol:
    E102-D No:1
      Page(s):
    219-222

    It is a hot issue that speeding up the network layers and decreasing the network parameters in convolutional neural networks (CNNs). In this paper, we propose a novel method, namely, symmetric decomposition of convolution kernels (SDKs). It symmetrically separates k×k convolution kernels into (k×1 and 1×k) or (1×k and k×1) kernels. We conduct the comparison experiments of the network models designed by SDKs on MNIST and CIFAR-10 datasets. Compared with the corresponding CNNs, we obtain good recognition performance, with 1.1×-1.5× speedup and more than 30% reduction of network parameters. The experimental results indicate our method is useful and effective for CNNs in practice, in terms of speedup performance and reduction of parameters.

  • Multi Long-Short Term Memory Models for Short Term Traffic Flow Prediction

    Zelong XUE  Yang XUE  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    3272-3275

    Many single model methods have been applied to real-time short-term traffic flow prediction. However, since traffic flow data is mixed with a variety of ingredients, the performance of single model is limited. Therefore, we proposed Multi-Long-Short Term Memory Models, which improved traffic flow prediction accuracy comparing with state-of-the-art models.

  • Development of License Plate Recognition on Complex Scene with Plate-Style Classification and Confidence Scoring Based on KNN

    Vince Jebryl MONTERO  Yong-Jin JEONG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3181-3189

    This paper presents an approach for developing an algorithm for automatic license plate recognition system (ALPR) on complex scenes. A plate-style classification method is also proposed in this paper to address the inherent challenges for ALPR in a system that uses multiple plate-styles (e.g., different fonts, multiple plate lay-out, variations in character sequences) which is the case in the current Philippine license plate system. Methods are proposed for each ALPR module: plate detection, character segmentation, and character recognition. K-nearest neighbor (KNN) is used as a classifier for character recognition together with a proposed confidence scoring to rate the decision made by the classifier. A small dataset of Philippine license plates but with relevant features of complex scenarios for ALPR is prepared. Using the proposed system on the prepared dataset, the performance of the system is evaluated on different categories of complex scenes. The proposed algorithm structure shows promising results and yielded an overall accuracy higher than the existing ALPR systems on the dataset consisting mostly of complex scenes.

  • Internet Anomaly Detection Based on Complex Network Path

    Jinfa WANG  Siyuan JIA  Hai ZHAO  Jiuqiang XU  Chuan LIN  

     
    PAPER-Internet

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2397-2408

    Detecting anomalies, such as network failure or intentional attack in Internet, is a vital but challenging task. Although numerous techniques have been developed based on Internet traffic, detecting anomalies from the perspective of Internet topology structure is going to be possible because the anomaly detection of structured datasets based on complex network theory has become a focus of attention recently. In this paper, an anomaly detection method for the large-scale Internet topology is proposed to detect local structure crashes caused by the cascading failure. In order to quantify the dynamic changes of Internet topology, the network path changes coefficient (NPCC) is put forward which highlights the Internet abnormal state after it is attacked continuously. Furthermore, inspired by Fibonacci Sequence, we proposed the decision function that can determine whether the Internet is abnormal or not. That is the current Internet is abnormal if its NPCC is out of the normal domain calculated using the previous k NPCCs of Internet topology. Finally the new Internet anomaly detection method is tested against the topology data of three Internet anomaly events. The results show that the detection accuracy of all events are over 97%, the detection precision for three events are 90.24%, 83.33% and 66.67%, when k=36. According to the experimental values of index F1, larger values of k offer better detection performance. Meanwhile, our method has better performance for the anomaly behaviors caused by network failure than those caused by intentional attack. Compared with traditional anomaly detection methods, our work is more simple and powerful for the government or organization in items of detecting large-scale abnormal events.

  • A Genetic Approach for Accelerating Communication Performance by Node Mapping

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    LETTER-Architecture

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2971-2975

    This paper intends to reduce duration times in typical collective communications. We introduce logical addressing system apart from the physical one and, by rearranging the logical node addresses properly, we intend to reduce communication overheads so that ideal communication is performed. One of the key issues is rearrangement of the logical addressing system. We introduce genetic algorithm (GA) as meta-heuristic solution as well as the random search strategy. Our GA-based method achieves at most 2.50 times speedup in three-traffic-pattern cases.

  • Discovering Co-Cluster Structure from Relationships between Biased Objects

    Iku OHAMA  Takuya KIDA  Hiroki ARIMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    3108-3122

    Latent variable models for relational data enable us to extract the co-cluster structure underlying observed relational data. The Infinite Relational Model (IRM) is a well-known relational model for discovering co-cluster structures with an unknown number of clusters. The IRM and several related models commonly assume that the link probability between two objects depends only on their cluster assignment. However, relational models based on this assumption often lead us to extract many non-informative and unexpected clusters. This is because the cluster structures underlying real-world relationships are often blurred by biases of individual objects. To overcome this problem, we propose a multi-layered framework, which extracts a clear de-blurred co-cluster structure in the presence of object biases. Then, we propose the Multi-Layered Infinite Relational Model (MLIRM) which is a special instance of the proposed framework incorporating the IRM as a co-clustering model. Furthermore, we reveal that some relational models can be regarded as special cases of the MLIRM. We derive an efficient collapsed Gibbs sampler to perform posterior inference for the MLIRM. Experiments conducted using real-world datasets have confirmed that the proposed model successfully extracts clear and interpretable cluster structures from real-world relational data.

  • A Robust Depth Image Based Rendering Scheme for Stereoscopic View Synthesis with Adaptive Domain Transform Based Filtering Framework

    Wei LIU  Yun Qi TANG  Jian Wei DING  Ming Yue CUI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3138-3149

    Depth image based rendering (DIBR), which is utilized to render virtual views with a color image and the corresponding depth map, is one of the key procedures in the 2D to 3D conversion process. However, some troubling problems, such as depth edge misalignment, disocclusion occurrences and cracks at resampling, still exist in current DIBR systems. To solve these problems, in this paper, we present a robust depth image based rendering scheme for stereoscopic view synthesis. The cores of the proposed scheme are two depth map filters which share a common domain transform based filtering framework. As a first step, a filter of this framework is carried out to realize texture-depth boundary alignments and directional disocclusion reduction smoothing simultaneously. Then after depth map 3D warping, another adaptive filter is used on the warped depth maps with delivered scene gradient structures to further diminish the remaining cracks and noises. Finally, with the optimized depth map of the virtual view, backward texture warping is adopted to retrieve the final texture virtual view. The proposed scheme enables to yield visually satisfactory results for high quality 2D to 3D conversion. Experimental results demonstrate the excellent performances of the proposed approach.

  • A Block-Permutation-Based Encryption Scheme with Independent Processing of RGB Components

    Shoko IMAIZUMI  Hitoshi KIYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/09/07
      Vol:
    E101-D No:12
      Page(s):
    3150-3157

    This paper proposes a block-permutation-based encryption (BPBE) scheme for the encryption-then-compression (ETC) system that enhances the color scrambling. A BPBE image can be obtained through four processes, positional scrambling, block rotation/flip, negative-positive transformation, and color component shuffling, after dividing the original image into multiple blocks. The proposed scheme scrambles the R, G, and B components independently in positional scrambling, block rotation/flip, and negative-positive transformation, by assigning different keys to each color component. The conventional scheme considers the compression efficiency using JPEG and JPEG 2000, which need a color conversion before the compression process by default. Therefore, the conventional scheme scrambles the color components identically in each process. In contrast, the proposed scheme takes into account the RGB-based compression, such as JPEG-LS, and thus can increase the extent of the scrambling. The resilience against jigsaw puzzle solver (JPS) can consequently be increased owing to the wider color distribution of the BPBE image. Additionally, the key space for resilience against brute-force attacks has also been expanded exponentially. Furthermore, the proposed scheme can maintain the JPEG-LS compression efficiency compared to the conventional scheme. We confirm the effectiveness of the proposed scheme by experiments and analyses.

  • Security Consideration for Deep Learning-Based Image Forensics

    Wei ZHAO  Pengpeng YANG  Rongrong NI  Yao ZHAO  Haorui WU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3263-3266

    Recently, image forensics community has paid attention to the research on the design of effective algorithms based on deep learning technique. And facts proved that combining the domain knowledge of image forensics and deep learning would achieve more robust and better performance than the traditional schemes. Instead of improving algorithm performance, in this paper, the safety of deep learning based methods in the field of image forensics is taken into account. To the best of our knowledge, this is the first work focusing on this topic. Specifically, we experimentally find that the method using deep learning would fail when adding the slight noise into the images (adversarial images). Furthermore, two kinds of strategies are proposed to enforce security of deep learning-based methods. Firstly, a penalty term to the loss function is added, which is the 2-norm of the gradient of the loss with respect to the input images, and then an novel training method is adopt to train the model by fusing the normal and adversarial images. Experimental results show that the proposed algorithm can achieve good performance even in the case of adversarial images and provide a security consideration for deep learning-based image forensics.

  • Multiuser Multiantenna Downlink Transmission Using Extended Regularized Channel Inversion Precoding

    Yanqing LIU  Liyun DAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2462-2470

    In this paper, we apply extended regularized channel inversion precoding to address the multiuser multiantenna downlink transmission problem. Different from conventional regularized channel inversion precoding, extended RCI precoding considers non-homogeneous channels, adjusts more regularization parameters, and exploits the information gained by inverting the covariance matrix of the channel. Two ways of determining the regularization parameters are investigated. First, the parameters can be determined by solving a max-min SINR problem. The constraints of the problem can be transformed to the second-order cone (SOC) constraints. The optimal solution of the problem can be obtained by iteratively solving a second-order cone programming (SOCP) problem. In order to reduce the computational complexity, a one-shot algorithm is proposed. Second, the sum-rate maximization problem is discussed. The simple gradient-based method is used to solve the problem and get the regularization parameters. The simulation results indicate that the proposed algorithms exhibit improved max-min SINR performance and sum-rate performance over RCI precoding.

  • Fully Integrated CMOS PAs with Two-Winding and Single-Winding Combined Transformer for WLAN Applications

    Se-Eun CHOI  Hyunjin AHN  Hyunsik RYU  Ilku NAM  Ockgoo LEE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:12
      Page(s):
    931-941

    Fully integrated CMOS power amplifiers (PAs) with a two-winding and single-winding combined transformer (TS transformer) are presented. The general analysis of the TS transformer and other power-combining transformers, i.e., the series-combining transformer and parallel-combining transformer, is presented in terms of the transformer design parameters. Compared with other power-combining transformers, the proposed power-combining TS transformer offers high-efficiency with a compact form factor. In addition, a fully integrated CMOS PA using the TS transformer with multi-gated transistors (MGTRs) and adaptive bias circuit has been proposed to improve linearity. The proposed PAs are implemented using 65-nm CMOS technology. The implemented PA with the TS transformer achieves a saturated output power of 26.7 dBm with drain efficiency (DE) of 47.7%. The PA achieves 20.13-dBm output power with 21.4% DE while satisfying the -25-dB error vector magnitude (EVM) requirement when tested with the WLAN 802.11g signal. The implemented PA using the TS transformer with MGTRs and adaptive bias circuit achieves the -30-dB EVM requirement up to an output power of 17.13 dBm with 10.43% DE when tested using the WLAN 802.11ac signal.

  • New Perfect Sequences from Helleseth-Gong Sequences

    Yong WANG  Yang YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2392-2396

    In this paper, for any given prime power q, using Helleseth-Gong sequences with ideal auto-correlation property, we propose a class of perfect sequences of length (qm-1)/(q-1). As an application, a subclass of constructed perfect sequences is used to design optimal and perfect difference systems of sets.

  • Two Classes of Linear Codes with Two or Three Weights

    Guangkui XU  Xiwang CAO  Jian GAO  Gaojun LUO  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:12
      Page(s):
    2366-2373

    Many linear codes with two or three weights have recently been constructed due to their applications in consumer electronics, communication, data storage system, secret sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, two classes of p-ary linear codes with two or three weights are presented. The first class of linear codes with two or three weights is obtained from a certain non-quadratic function. The second class of linear codes with two weights is obtained from the images of a certain function on $mathbb{F}_{p^m}$. In some cases, the resulted linear codes are optimal in the sense that they meet the Griesmer bound.

  • Avoiding Performance Impacts by Re-Replication Workload Shifting in HDFS Based Cloud Storage

    Thanda SHWE  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2958-2967

    Data replication in cloud storage systems brings a lot of benefits, such as fault tolerance, data availability, data locality and load balancing both from reliability and performance perspectives. However, each time a datanode fails, data blocks stored on the failed datanode must be restored to maintain replication level. This may be a large burden for the system in which resources are highly utilized with users' application workloads. Although there have been many proposals for replication, the approach of re-replication has not been properly addressed yet. In this paper, we present a deferred re-replication algorithm to dynamically shift the re-replication workload based on current resource utilization status of the system. As workload pattern varies depending on the time of the day, simulation results from synthetic workload demonstrate a large opportunity for minimizing impacts on users' application workloads with the simple algorithm that adjusts re-replication based on current resource utilization. Our approach can reduce performance impacts on users' application workloads while ensuring the same reliability level as default HDFS can provide.

  • BareUnpack: Generic Unpacking on the Bare-Metal Operating System

    Binlin CHENG  Pengwei LI  

     
    PAPER-Information Network

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3083-3091

    Malware has become a growing threat as malware writers have learned that signature-based detectors can be easily evaded by packing the malware. Packing is a major challenge to malware analysis. The generic unpacking approach is the major solution to the threat of packed malware, and it is based on the intrinsic nature of the execution of packed executables. That is, the original code should be extracted in memory and get executed at run-time. The existing generic unpacking approaches need a simulated environment to monitor the executing of the packed executables. Unfortunately, the simulated environment is easily detected by the environment-sensitive packers. It makes the existing generic unpacking approaches easily evaded by the packer. In this paper, we propose a novel unpacking approach, BareUnpack, to monitor the execution of the packed executables on the bare-metal operating system, and then extracts the hidden code of the executable. BareUnpack does not need any simulated environment (debugger, emulator or VM), and it works on the bare-metal operating system directly. Our experimental results show that BareUnpack can resist the environment-sensitive packers, and improve the unpacking effectiveness, which outperforms other existing unpacking approaches.

4501-4520hit(42807hit)