The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

1641-1660hit(42807hit)

  • Automating Bad Smell Detection in Goal Refinement of Goal Models

    Shinpei HAYASHI  Keisuke ASANO  Motoshi SAEKI  

     
    PAPER

      Pubricized:
    2022/01/06
      Vol:
    E105-D No:5
      Page(s):
    837-848

    Goal refinement is a crucial step in goal-oriented requirements analysis to create a goal model of high quality. Poor goal refinement leads to missing requirements and eliciting incorrect requirements as well as less comprehensiveness of produced goal models. This paper proposes a technique to automate detecting bad smells of goal refinement, symptoms of poor goal refinement. At first, to clarify bad smells, we asked subjects to discover poor goal refinement concretely. Based on the classification of the specified poor refinement, we defined four types of bad smells of goal refinement: Low Semantic Relation, Many Siblings, Few Siblings, and Coarse Grained Leaf, and developed two types of measures to detect them: measures on the graph structure of a goal model and semantic similarity of goal descriptions. We have implemented a supporting tool to detect bad smells and assessed its usefulness by an experiment.

  • RMF-Net: Improving Object Detection with Multi-Scale Strategy

    Yanyan ZHANG  Meiling SHEN  Wensheng YANG  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2021/12/02
      Vol:
    E105-B No:5
      Page(s):
    675-683

    We propose a target detection network (RMF-Net) based on the multi-scale strategy to solve the problems of large differences in the detection scale and mutual occlusion, which result in inaccurate locations. A multi-layer feature fusion module and multi-expansion dilated convolution pyramid module were designed based on the ResNet-101 residual network. The ability of the network to express the multi-scale features of the target could be improved by combining the shallow and deep features of the target and expanding the receptive field of the network. Moreover, RoI Align pooling was introduced to reduce the low accuracy of the anchor frame caused by multiple quantizations for improved positioning accuracy. Finally, an AD-IoU loss function was designed, which can adaptively optimise the distance between the prediction box and real box by comprehensively considering the overlap rate, centre distance, and aspect ratio between the boxes and can improve the detection accuracy of the occlusion target. Ablation experiments on the RMF-Net model verified the effectiveness of each factor in improving the network detection accuracy. Comparative experiments were conducted on the Pascal VOC2007 and Pascal VOC2012 datasets with various target detection algorithms based on convolutional neural networks. The results demonstrated that RMF-Net exhibited strong scale adaptability at different occlusion rates. The detection accuracy reached 80.4% and 78.5% respectively.

  • A Discussion on Physical Optics Approximation for Edge Diffraction by A Conducting Wedge

    Duc Minh NGUYEN  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-C No:5
      Page(s):
    176-183

    In this study, edge diffraction of an electromagnetic plane wave by two-dimensional conducting wedges has been analyzed by the physical optics (PO) method for both E and H polarizations. Non-uniform and uniform asymptotic solutions of diffracted fields have been derived. A unified edge diffraction coefficient has also been derived with four cotangent functions from the conventional angle-dependent coefficients. Numerical calculations have been made to compare the results with those by other methods, such as the exact solution and the uniform geometrical theory of diffraction (UTD). A good agreement has been observed to confirm the validity of our method.

  • Cataloging Bad Smells in Use Case Descriptions and Automating Their Detection

    Yotaro SEKI  Shinpei HAYASHI  Motoshi SAEKI  

     
    PAPER

      Pubricized:
    2022/01/06
      Vol:
    E105-D No:5
      Page(s):
    849-863

    Use case modeling is popular to represent the functionality of the system to be developed, and it consists of two parts: a use case diagram and use case descriptions. Use case descriptions are structured text written in natural language, and the usage of natural language can lead to poor descriptions such as ambiguous, inconsistent, and/or incomplete descriptions. Poor descriptions lead to missing requirements and eliciting incorrect requirements as well as less comprehensiveness of the produced use case model. This paper proposes a technique to automate detecting bad smells of use case descriptions, i.e., symptoms of poor descriptions. At first, to clarify bad smells, we analyzed existing use case models to discover poor use case descriptions concretely and developed the list of bad smells, i.e., a catalog of bad smells. Some of the bad smells can be refined into measures using the Goal-Question-Metric paradigm to automate their detection. The main contributions of this paper are the developed catalog of bad smells and the automated detection of these bad smells. We have implemented an automated smell detector for 22 bad smells at first and assessed its usefulness by an experiment. As a result, the first version of our tool got a precision ratio of 0.591 and a recall ratio of 0.981. Through evaluating our catalog and the automated tool, we found additional six bad smells and two metrics. Then, we obtained the precision of 0.596 and the recall of 1.000 by our final version of the automated tool.

  • Deep Coalitional Q-Learning for Dynamic Coalition Formation in Edge Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/14
      Vol:
    E105-D No:5
      Page(s):
    864-872

    With the high development of computation requirements in Internet of Things, resource-limited edge servers usually require to cooperate to perform the tasks. Most related studies usually assume a static cooperation approach which might not suit the dynamic environment of edge computing. In this paper, we consider a dynamic cooperation approach by guiding edge servers to form coalitions dynamically. It raises two issues: 1) how to guide them to optimally form coalitions and 2) how to cope with the dynamic feature where server statuses dynamically change as the tasks are performed. The coalitional Markov decision process (CMDP) model proposed in our previous work can handle these issues well. However, its basic solution, coalitional Q-learning, cannot handle the large scale problem when the task number is large in edge computing. Our response is to propose a novel algorithm called deep coalitional Q-learning (DCQL) to solve it. To sum up, we first formulate the dynamic cooperation problem of edge servers as a CMDP: each edge server is regarded as an agent and the dynamic process is modeled as a MDP where the agents observe the current state to formulate several coalitions. Each coalition takes an action to impact the environment which correspondingly transfers to the next state to repeat the above process. Then, we propose DCQL which includes a deep neural network and so can well cope with large scale problem. DCQL can guide the edge servers to form coalitions dynamically with the target of optimizing some goal. Furthermore, we run experiments to verify our proposed algorithm's effectiveness in different settings.

  • Balanced (Almost) Binary Sequence Pairs of Period Q ≡ 1(mod 4) with Optimal Autocorrelation and Cross-Correlation

    Xiuping PENG  Hongxiao LI  Hongbin LIN  

     
    LETTER-Coding Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-A No:5
      Page(s):
    892-896

    In this letter, the almost binary sequence (sequence with a single zero element) is considered as a special class of binary sequence. Four new bounds on the cross-correlation of balanced (almost) binary sequences with period Q ≡ 1(mod 4) under the precondition of out-of-phase autocorrelation values {-1} or {1, -3} are firstly presented. Then, seven new pairs of balanced (almost) binary sequences of period Q with ideal or optimal autocorrelation values and meeting the lower cross-correlation bounds are proposed by using cyclotomic classes of order 4. These new bounds of (almost) binary sequences with period Q achieve smaller maximum out-of-phase autocorrelation values and cross-correlation values.

  • Bit-Parallel Systolic Architecture for AB and AB2 Multiplications over GF(2m)

    Kee-Won KIM  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/11/02
      Vol:
    E105-C No:5
      Page(s):
    203-206

    In this paper, we present a scheme to compute either AB or AB2 multiplications over GF(2m) and propose a bit-parallel systolic architecture based on the proposed algorithm. The AB multiplication algorithm is derived in the same form as the formula of AB2 multiplication algorithm, and an architecture that can perform AB multiplication by adding very little extra hardware to AB2 multiplier is designed. Therefore, the proposed architecture can be effectively applied to hardware constrained applications that cannot deploy AB2 multiplier and AB multiplier separately.

  • Analysis and Design of 6.78MHz Wireless Power Transfer System for Robot Arm Open Access

    Katsuki TOKANO  Wenqi ZHU  Tatsuki OSATO  Kien NGUYEN  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    494-503

    This paper presents a design method of a two-hop wireless power transfer (WPT) system for installing on a robot arm. The class-E inverter and the class-D rectifier are used on the transmission and receiving sides, respectively, in the proposed WPT system. Analytical equations for the proposed WPT system are derived as functions of the geometrical and physical parameters of the coils, such as the outer diameter and height of the coils, winding-wire diameter, and number of turns. Using the analytical equations, we can optimize the WPT system to obtain the design values with the theoretically highest power-delivery efficiency under the size limitation of the robot arm. The circuit experiments are in quantitative agreement with the theoretical predictions obtained from the analysis, indicating the validity of the analysis and design method. The experimental prototype achieved 83.6% power-delivery efficiency at 6.78MHz operating frequency and 39.3W output power.

  • KBP: Kernel Enhancements for Low-Latency Networking for Virtual Machine and Container without Application Customization Open Access

    Kei FUJIMOTO  Masashi KANEKO  Kenichi MATSUI  Masayuki AKUTSU  

     
    PAPER-Network

      Pubricized:
    2021/10/26
      Vol:
    E105-B No:5
      Page(s):
    522-532

    Packet processing on commodity hardware is a cost-efficient and flexible alternative to specialized networking hardware. However, virtualizing dedicated networking hardware as a virtual machine (VM) or a container on a commodity server results in performance problems, such as longer latency and lower throughput. This paper focuses on obtaining a low-latency networking system in a VM and a container. We reveal mechanisms that cause millisecond-scale networking delays in a VM through a series of experiments. To eliminate such delays, we design and implement a low-latency networking system, kernel busy poll (KBP), which achieves three goals: (1) microsecond-scale tail delays and higher throughput than conventional solutions are achieved in a VM and a container; (2) application customization is not required, so applications can use the POSIX sockets application program interface; and (3) KBP software does not need to be developed for every Linux kernel security update. KBP can be applied to both a VM configuration and a container configuration. Evaluation results indicate that KBP achieves microsecond-scale tail delays in both a VM and a container. In the VM configuration, KBP reduces maximum round-trip latency by more than 98% and increases the throughput by up to three times compared with existing NAPI and Open vSwitch with the Data Plane Development Kit (OvS-DPDK). In the container configuration, KBP reduces maximum round-trip latency by 21% to 96% and increases the throughput by up to 1.28 times compared with NAPI.

  • Design and Optimization for Energy-Efficient Transmission Strategies with Full-Duplex Amplify-and-Forward Relaying

    Caixia CAI  Wenyang GAN  Han HAI  Fengde JIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    608-616

    In this paper, to improve communication system's energy-efficiency (EE), multi-case optimization of two new transmission strategies is investigated. Firstly, with amplify-and-forward relaying and full-duplex technique, two new transmission strategies are designed. The designed transmission strategies consider direct links and non-ideal transmission conditions. At the same time, detailed capacity and energy consumption analyses of the designed transmission strategies are given. In addition, EE optimization and analysis of the designed transmission strategies are studied. It is the first case of EE optimization and it is achieved by joint optimization of transmit time (TT) and transmit power (TP). Furthermore, the second and third cases of EE optimization with respectively optimizing TT and TP are given. Simulations reveal that the designed transmission strategies can effectively improve the communication system's EE.

  • Contextualized Language Generation on Visual-to-Language Storytelling

    Rizal Setya PERDANA  Yoshiteru ISHIDA  

     
    PAPER

      Pubricized:
    2022/01/17
      Vol:
    E105-D No:5
      Page(s):
    873-886

    This study presents a formulation for generating context-aware natural language by machine from visual representation. Given an image sequence input, the visual storytelling task (VST) aims to generate a coherent, object-focused, and contextualized sentence story. Previous works in this domain faced a problem in modeling an architecture that works in temporal multi-modal data, which led to a low-quality output, such as low lexical diversity, monotonous sentences, and inaccurate context. This study introduces a further improvement, that is, an end-to-end architecture, called cross-modal contextualize attention, optimized to extract visual-temporal features and generate a plausible story. Visual object and non-visual concept features are encoded from the convolutional feature map, and object detection features are joined with language features. Three scenarios are defined in decoding language generation by incorporating weights from a pre-trained language generation model. Extensive experiments are conducted to confirm that the proposed model outperforms other models in terms of automatic metrics and manual human evaluation.

  • A Performance Model for Reconfigurable Block Cipher Array Utilizing Amdahl's Law

    Tongzhou QU  Zibin DAI  Yanjiang LIU  Lin CHEN  Xianzhao XIA  

     
    PAPER-Computer System

      Pubricized:
    2022/02/17
      Vol:
    E105-D No:5
      Page(s):
    964-972

    The existing research on Amdahl's law is limited to multi/many-core processors, and cannot be applied to the important parallel processing architecture of coarse-grained reconfigurable arrays. This paper studies the relation between the multi-level parallelism of block cipher algorithms and the architectural characteristics of coarse-grain reconfigurable arrays. We introduce the key variables that affect the performance of reconfigurable arrays, such as communication overhead and configuration overhead, into Amdahl's law. On this basis, we propose a performance model for coarse-grain reconfigurable block cipher array (CGRBA) based on the extended Amdahl's law. In addition, this paper establishes the optimal integer nonlinear programming model, which can provide a parameter reference for the architecture design of CGRBA. The experimental results show that: (1) reducing the communication workload ratio and increasing the number of configuration pages reasonably can significantly improve the algorithm performance on CGRBA; (2) the communication workload ratio has a linear effect on the execution time.

  • Cellular V2X Standardization in 4G and 5G Open Access

    Shohei YOSHIOKA  Satoshi NAGATA  

     
    INVITED PAPER

      Pubricized:
    2021/11/08
      Vol:
    E105-A No:5
      Page(s):
    754-762

    Recently connected car called Vehicle-to-Everything (V2X) has been attracted for smart automotive mobility. Among V2X technologies, cellular V2X (C-V2X) discussed and specified in 3rd generation partnership project (3GPP) is generally regarded as possibly utilized one. In 3GPP, the fourth generation mobile communication system (4G) and the fifth generation (5G) including new radio (NR) provide C-V2X standards specifications. In this paper, we will introduce C-V2X standards and share our views on future C-V2X.

  • SVM Based Intrusion Detection Method with Nonlinear Scaling and Feature Selection

    Fei ZHANG  Peining ZHEN  Dishan JING  Xiaotang TANG  Hai-Bao CHEN  Jie YAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/14
      Vol:
    E105-D No:5
      Page(s):
    1024-1038

    Intrusion is one of major security issues of internet with the rapid growth in smart and Internet of Thing (IoT) devices, and it becomes important to detect attacks and set out alarm in IoT systems. In this paper, the support vector machine (SVM) and principal component analysis (PCA) based method is used to detect attacks in smart IoT systems. SVM with nonlinear scheme is used for intrusion classification and PCA is adopted for feature selection on the training and testing datasets. Experiments on the NSL-KDD dataset show that the test accuracy of the proposed method can reach 82.2% with 16 features selected from PCA for binary-classification which is almost the same as the result obtained with all the 41 features; and the test accuracy can achieve 78.3% with 29 features selected from PCA for multi-classification while 79.6% without feature selection. The Denial of Service (DoS) attack detection accuracy of the proposed method can achieve 8.8% improvement compared with existing artificial neural network based method.

  • FOREWORD Open Access

    Hiroyuki NAKAGAWA  

     
    FOREWORD

      Vol:
    E105-D No:5
      Page(s):
    836-836
  • A Semantic-Based Dual Location Privacy-Preserving Approach

    Xudong YANG  Ling GAO  Yan LI  Jipeng XU  Jie ZHENG  Hai WANG  Quanli GAO  

     
    PAPER-Information Network

      Pubricized:
    2022/02/16
      Vol:
    E105-D No:5
      Page(s):
    982-995

    With the popularity and development of Location-Based Services (LBS), location privacy-preservation has become a hot research topic in recent years, especially research on k-anonymity. Although previous studies have done a lot of work on anonymity-based privacy protection, there are still several challenges far from being perfectly solved, such as the negative impact on the security of anonymity by the semantic information, which from anonymous locations and query content. To address these semantic challenges, we propose a dual privacy preservation scheme based on the architecture of multi-anonymizers in this paper. Different from existing approaches, our method enhanced location privacy by integrating location anonymity and the encrypted query. First, the query encryption method that combines improved shamir mechanism and multi-anonymizers is proposed to enhance query safety. Second, we design an anonymity method that enhances semantic location privacy through anonymous locations that satisfy personal semantic diversity and replace sensitive semantic locations. Finally, the experiment on the real dataset shows that our algorithms provide much better privacy and use than previous solutions.

  • Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:5
      Page(s):
    936-945

    Distributed edge cloud computing is an important computation infrastructure for Internet of Things (IoT) and its task offloading problem has attracted much attention recently. Most existing work on task offloading in distributed edge cloud computing usually assumes that each self-interested user owns one edge server and chooses whether to execute its tasks locally or to offload the tasks to cloud servers. The goal of each edge server is to maximize its own interest like low delay cost, which corresponds to a non-cooperative setting. However, with the strong development of smart IoT communities such as smart hospital and smart factory, all edge and cloud servers can belong to one organization like a technology company. This corresponds to a cooperative setting where the goal of the organization is to maximize the team interest in the overall edge cloud computing system. In this paper, we consider a new problem called cooperative task offloading where all edge servers try to cooperate to make the entire edge cloud computing system achieve good performance such as low delay cost and low energy cost. However, this problem is hard to solve due to two issues: 1) each edge server status dynamically changes and task arrival is uncertain; 2) each edge server can observe only its own status, which makes it hard to optimize team interest as global information is unavailable. For solving these issues, we formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) which can well handle the dynamic features under partial observations. Then, we apply a multi-agent reinforcement learning algorithm called value decomposition network (VDN) and propose a VDN-based task offloading algorithm (VDN-TO) to solve the problem. Specifically, the motivation is that we use a team value function to evaluate the team interest, which is then divided into individual value functions for each edge server. Then, each edge server updates its individual value function in the direction that can maximize the team interest. Finally, we choose a part of a real dataset to evaluate our algorithm and the results show the effectiveness of our algorithm in a comparison with some other existing methods.

  • Performance Evaluation of Bluetooth Low Energy Positioning Systems When Using Sparse Training Data

    Tetsuya MANABE  Kosuke OMURA  

     
    PAPER

      Pubricized:
    2021/11/01
      Vol:
    E105-A No:5
      Page(s):
    778-786

    This paper evaluates the bluetooth low energy (BLE) positioning systems using the sparse-training data through the comparison experiments. The sparse-training data is extracted from the database including enough data for realizing the highly accurate and precise positioning. First, we define the sparse-training data, i.e., the data collection time and the number of smartphones, directions, beacons, and reference points, on BLE positioning systems. Next, the positioning performance evaluation experiments are conducted in two indoor environments, that is, an indoor corridor as a one-dimensionally spread environment and a hall as a twodimensionally spread environment. The algorithms for comparison are the conventional fingerprint algorithm and the hybrid algorithm (the authors already proposed, and combined the proximity algorithm and the fingerprint algorithm). Based on the results, we confirm that the hybrid algorithm performs well in many cases even when using sparse-training data. Consequently, the robustness of the hybrid algorithm, that the authors already proposed for the sparse-training data, is shown.

  • Error Rate Performance Analysis of M-ary Coherent FSO Communications with Spatial Diversity in Strong Atmospheric Turbulence

    Jinkyu KANG  Seongah JEONG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/10/28
      Vol:
    E105-A No:5
      Page(s):
    897-900

    In this letter, we analyze the error rate performance of M-ary coherent free-space optical (FSO) communications under strong atmospheric turbulence. Specifically, we derive the exact error rates for M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) based on moment-generating function (MGF) with negative exponential distributed turbulence, where maximum ratio combining (MRC) receiver is adopted to mitigate the turbulence effects. Additionally, by evaluating the asymptotic error rate in high signal-to-noise ratio (SNR) regime, it is possible to effectively investigate and predict the error rate performance for various system configurations. The accuracy and the effectiveness of our theoretical analyses are verified via numerical results.

  • A Study on the Bandwidth of the Transformer Matching Circuits

    Satoshi TANAKA  

     
    PAPER

      Pubricized:
    2021/10/25
      Vol:
    E105-A No:5
      Page(s):
    844-852

    With the spread of the 5th generation mobile phone, the increase of the output power of PA (power amplifier) has become important, and in recent years, differential amplifiers that can increase the output voltage amplitude for the power supply voltage have been examined from the viewpoint of power synthesis. In the case of a differential PA, in addition to the advantage of voltage amplitude, the load impedance can be set 4 times as much as that of a single-ended PA, which makes it possible to reduce the impact of parasitic resistance. With the study of the differential PA, many transformer matching circuits have been studied in addition to the LC matching circuits that have been widely used in the past. The transformer matching circuit can easily realize the differential-single conversion, and the transformer matching circuit is an indispensable technology in the differential PA. As with the LC matching circuit, widening the bandwidth of the transformer matching circuit is at issue. In this paper, characteristics of basic transformer matching circuits are analyzed by adding input/output shunt capacitance to transformers and the conditions of bandwidth improvement are clarified. In addition, by comparing the FBW (fractional bandwidth) with the LC 2-stage matching circuit, it is shown that the FBW can be competitive.

1641-1660hit(42807hit)