The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

1661-1680hit(42807hit)

  • Fully Connected Imaging Network for Near-Field Synthetic Aperture Interferometric Radiometer

    Zhimin GUO  Jianfei CHEN  Sheng ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/09
      Vol:
    E105-D No:5
      Page(s):
    1120-1124

    Millimeter wave synthetic aperture interferometric radiometers (SAIR) are very powerful instruments, which can effectively realize high-precision imaging detection. However due to the existence of interference factor and complex near-field error, the imaging effect of near-field SAIR is usually not ideal. To achieve better imaging results, a new fully connected imaging network (FCIN) is proposed for near-field SAIR. In FCIN, the fully connected network is first used to reconstruct the image domain directly from the visibility function, and then the residual dense network is used for image denoising and enhancement. The simulation results show that the proposed FCIN method has high imaging accuracy and shorten imaging time.

  • Multi-Level Encrypted Transmission Scheme Using Hybrid Chaos and Linear Modulation Open Access

    Tomoki KAGA  Mamoru OKUMURA  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    638-647

    In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.

  • Fast xFlow Proxy: Exploring and Visualizing Deep Inside of Carrier Traffic

    Shohei KAMAMURA  Yuhei HAYASHI  Yuki MIYOSHI  Takeaki NISHIOKA  Chiharu MORIOKA  Hiroyuki OHNISHI  

     
    PAPER-Network System

      Pubricized:
    2021/11/09
      Vol:
    E105-B No:5
      Page(s):
    512-521

    This paper proposes a fast and scalable traffic monitoring system called Fast xFlow Proxy. For efficiently provisioning and operating networks, xFlow such as IPFIX and NetFlow is a promising technology for visualizing the detailed traffic matrix in a network. However, internet protocol (IP) packets in a large carrier network are encapsulated with various outer headers, e.g., layer 2 tunneling protocol (L2TP) or multi-protocol label switching (MPLS) labels. As native xFlow technologies are applied to the outer header, the desired inner information cannot be visualized. From this motivation, we propose Fast xFlow Proxy, which explores the complicated carrier's packet, extracts inner information properly, and relays the inner information to a general flow collector. Fast xFlow Proxy should be able to handle various packet processing operations possible (e.g., header analysis, header elimination, and statistics) at a wire rate. To realize the processing speed needed, we implement Fast xFlow Proxy using the data plane development kit (DPDK) and field-programmable gate array (FPGA). By optimizing deployment of processes between DPDK and FPGA, Fast xFlow Proxy achieves wire rate processing. From evaluations, we can achieve over 20 Gbps performance by using a single server and 100 Gbps performance by using scale-out architecture. We also show that this performance is sufficiently practical for monitoring a nationwide carrier network.

  • X-Band GaN Chipsets for Cost-Effective 20W T/R Modules Open Access

    Jun KAMIOKA  Yoshifumi KAWAMURA  Ryota KOMARU  Masatake HANGAI  Yoshitaka KAMO  Tetsuo KODERA  Shintaro SHINJO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/12/10
      Vol:
    E105-C No:5
      Page(s):
    194-202

    This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-effective 20W transmit-receive (T/R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power amplifier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T/R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4-7.4W, an associate gain of 22.3-24.6dB and a power added efficiency (PAE) of 32-36% over 9.0-11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20-28W, associate gain of 7.8-10.7dB, and a PAE of 40-56% over 9.0-11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15-30W, associate gain of 27-30dB, and PAE of 26-33% over 9.0-11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1-1.3dB and isolation of 10.1-14.7dB over 8.0-11.5GHz. By employing cost-effective circuit configurations, the costs of these chipsets are estimated to be about half that of conventional chipsets.

  • Simple Proof of the Lower Bound on the Average Distance from the Fermat-Weber Center of a Convex Body Open Access

    Xuehou TAN  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    853-857

    We show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least Δ(Q)/6, where Δ(Q) denotes the diameter of Q. Our proof is simple and straightforward, since it needs only elementary calculations. This simplifies a previously known proof that is based on Steiner symmetrizations.

  • Low-Complexity VBI-Based Channel Estimation for Massive MIMO Systems

    Chen JI  Shun WANG  Haijun FU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    600-607

    This paper proposes a low-complexity variational Bayesian inference (VBI)-based method for massive multiple-input multiple-output (MIMO) downlink channel estimation. The temporal correlation at the mobile user side is jointly exploited to enhance the channel estimation performance. The key to the success of the proposed method is the column-independent factorization imposed in the VBI framework. Since we separate the Bayesian inference for each column vector of signal-of-interest, the computational complexity of the proposed method is significantly reduced. Moreover, the temporal correlation is automatically uncoupled to facilitate the updating rule derivation for the temporal correlation itself. Simulation results illustrate the substantial performance improvement achieved by the proposed method.

  • LMI-Based Design of Output Feedback Controllers with Decentralized Event-Triggering

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:5
      Page(s):
    816-822

    In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.

  • Specification and Verification of Multitask Real-Time Systems Using the OTS/CafeOBJ Method

    Masaki NAKAMURA  Shuki HIGASHI  Kazutoshi SAKAKIBARA  Kazuhiro OGATA  

     
    PAPER

      Pubricized:
    2021/09/24
      Vol:
    E105-A No:5
      Page(s):
    823-832

    Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.

  • An Evaluation of a New Type of High Efficiency Hybrid Gate Drive Circuit for SiC-MOSFET Suitable for Automotive Power Electronics System Applications Open Access

    Masayoshi YAMAMOTO  Shinya SHIRAI  Senanayake THILAK  Jun IMAOKA  Ryosuke ISHIDO  Yuta OKAWAUCHI  Ken NAKAHARA  

     
    INVITED PAPER

      Pubricized:
    2021/11/26
      Vol:
    E105-A No:5
      Page(s):
    834-843

    In response to fast charging systems, Silicon Carbide (SiC) power semiconductor devices are of great interest of the automotive power electronics applications as the next generation of fast charging systems require high voltage batteries. For high voltage battery EVs (Electric Vehicles) over 800V, SiC power semiconductor devices are suitable for 3-phase inverters, battery chargers, and isolated DC-DC converters due to their high voltage rating and high efficiency performance. However, SiC-MOSFETs have two characteristics that interfere with high-speed switching and high efficiency performance operations for SiC MOS-FET applications in automotive power electronics systems. One characteristic is the low voltage rating of the gate-source terminal, and the other is the large internal gate-resistance of SiC MOS-FET. The purpose of this work was to evaluate a proposed hybrid gate drive circuit that could ignore the internal gate-resistance and maintain the gate-source terminal stability of the SiC-MOSFET applications. It has been found that the proposed hybrid gate drive circuit can achieve faster and lower loss switching performance than conventional gate drive circuits by using the current source gate drive characteristics. In addition, the proposed gate drive circuit can use the voltage source gate drive characteristics to protect the gate-source terminals despite the low voltage rating of the SiC MOS-FET gate-source terminals.

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • Current Status and Issues of Traffic Light Recognition Technology in Autonomous Driving System Open Access

    Naoki SUGANUMA  Keisuke YONEDA  

     
    INVITED PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-A No:5
      Page(s):
    763-769

    Autonomous driving technology is currently attracting a lot of attention as a technology that will play a role in the next generation of mobility. For autonomous driving in urban areas, it is necessary to recognize various information. Especially, the recognition of traffic lights is important in crossing intersections. In this paper, traffic light recognition technology developed by the authors was evaluated using onboard sensor data during autonomous driving in the Tokyo waterfront area as an example of traffic light recognition technology. Based on the results, it was found that traffic lights could be recognized with an accuracy of approximately 99% to carry out the decision making for intersection approaching. However, from the evaluation results, it was also confirmed that traffic light recognition became difficult under situations involving occlusion by other object, background assimilation, nighttime conditions, and backlight by sunlight. It was also confirmed that these effects are mostly temporary, and do not significantly affect decision-making to enter intersections as a result of utilizing information from multiple traffic lights installed at an intersection. On the other hand, it is expected that recognition with current onboard cameras will become technically difficult during situations in which not all traffic lights are visually recognizable due to the effects of back or front light by sunlight when stopped at the stop line of an intersection. This paper summarizes these results and presents the necessity of appropriate traffic light installation on the assumption of recognition by onboard cameras.

  • Characterization and Construction of Generalized Bent Functions with Flexible Coefficients

    Zhiyao YANG  Pinhui KE  Zhixiong CHEN  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/10/29
      Vol:
    E105-A No:5
      Page(s):
    887-891

    In 2017, Tang et al. provided a complete characterization of generalized bent functions from ℤ2n to ℤq(q = 2m) in terms of their component functions (IEEE Trans. Inf. Theory. vol.63, no.7, pp.4668-4674). In this letter, for a general even q, we aim to provide some characterizations and more constructions of generalized bent functions with flexible coefficients. Firstly, we present some sufficient conditions for a generalized Boolean function with at most three terms to be gbent. Based on these results, we give a positive answer to a remaining question proposed by Hodžić in 2015. We also prove that the sufficient conditions are also necessary in some special cases. However, these sufficient conditions whether they are also necessary, in general, is left as an open problem. Secondly, from a uniform point of view, we provide a secondary construction of gbent function, which includes several known constructions as special cases.

  • Markov-Chain Analysis Model based Active Period Adaptation Scheme for IEEE 802.15.4 Network

    Ryota HORIUCHI  Kohei TOMITA  Nobuyoshi KOMURO  

     
    PAPER

      Pubricized:
    2021/10/22
      Vol:
    E105-A No:5
      Page(s):
    770-777

    Energy efficiency is one of the critical issues for Wireless Sensor Networks (WSN). IEEE 802.15.4 beacon-enabled MAC protocol achieves low energy consumption by having periodical inactive portions, where nodes run in low power. However, IEEE 802.15.4 beacon-enabled protocol cannot respond to dynamic changes in the number of sensor nodes and data rates in WSN because its duty cycle is fixed and immutable. In this paper, we propose a dynamic superframe duration adaptation scheme based on the Markov chain-based analysis methods for IEEE 802.15.4 beacon-enabled protocol. The proposed methods are flexible enough to accommodate changes in the number of sensor nodes and differences in data rates in WSNs while maintaining low latency and low energy consumption despite slight degradation in packet delivery ratio.

  • FOREWORD Open Access

    Daisuke ISHII  

     
    FOREWORD

      Vol:
    E105-A No:5
      Page(s):
    787-787
  • Nonnegative Matrix Factorization with Minimum Correlation and Volume Constrains

    Zhongqiang LUO  Chaofu JING  Chengjie LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/11/22
      Vol:
    E105-A No:5
      Page(s):
    877-881

    Nonnegative Matrix Factorization (NMF) is a promising data-driven matrix decomposition method, and is becoming very active and attractive in machine learning and blind source separation areas. So far NMF algorithm has been widely used in diverse applications, including image processing, anti-collision for Radio Frequency Identification (RFID) systems and audio signal analysis, and so on. However the typical NMF algorithms cannot work well in underdetermined mixture, i.e., the number of observed signals is less than that of source signals. In practical applications, adding suitable constraints fused into NMF algorithm can achieve remarkable decomposition results. As a motivation, this paper proposes to add the minimum volume and minimum correlation constrains (MCV) to the NMF algorithm, which makes the new algorithm named MCV-NMF algorithm suitable for underdetermined scenarios where the source signals satisfy mutual independent assumption. Experimental simulation results validate that the MCV-NMF algorithm has a better performance improvement in solving RFID tag anti-collision problem than that of using the nearest typical NMF method.

  • Distributed Scheme for Unit Commitment Problem Using Constraint Programming and ADMM Open Access

    Yuta INOUE  Toshiyuki MIYAMOTO  

     
    INVITED PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-A No:5
      Page(s):
    788-798

    The unit commitment problem (UCP) is the problem of deciding up/down and generation-level patterns of energy production units. Due to the expansion of distributed energy resources and the liberalization of energy trading in recent years, solving the distributed UCP (DUCP) is attracting the attention of researchers. Once an up/down pattern is determined, the generation-level pattern can be decided distributively using the alternating direction method of multipliers (ADMM). However, ADMM does not guarantee convergence when deciding both up/down and generation-level patterns. In this paper, we propose a method to solve the DUCP using ADMM and constraint optimization programming. Numerical experiments show the efficacy of the proposed method.

  • Reliable Decentralized Supervisory Control of Discrete Event Systems with Single-Level Inference

    Shigemasa TAKAI  Sho YOSHIDA  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:5
      Page(s):
    799-807

    We consider a reliable decentralized supervisory control problem for discrete event systems in the inference-based framework. This problem requires us to synthesize local supervisors such that the controlled system achieves the specification and is nonblocking, even if local control decisions of some local supervisors are not available for making the global control decision. In the case of single-level inference, we introduce a notion of reliable 1-inference-observability and show that reliable 1-inference-observability together with controllability and Lm(G)-closedness is a necessary and sufficient condition for the existence of a solution to the reliable decentralized supervisory control problem.

  • Optimal Control of Timed Petri Nets Under Temporal Logic Constraints with Generalized Mutual Exclusion

    Kohei FUJITA  Toshimitsu USHIO  

     
    PAPER

      Pubricized:
    2021/10/13
      Vol:
    E105-A No:5
      Page(s):
    808-815

    This paper presents a novel method for optimal control of timed Petri nets, introducing a novel temporal logic based constraint called a generalized mutual exclusion temporal constraint (GMETC). The GMETC is described by a metric temporal logic (MTL) formula where each atomic proposition represents a generalized mutual exclusion constraint (GMEC). We formulate an optimal control problem of the timed Petri nets under a given GMETC and solve the problem by transforming it into an integer linear programming problem where the MTL formula is encoded by linear inequalities. We show the effectiveness of the proposed approach by a numerical simulation.

  • Improved Metric Function for AlphaSeq Algorithm to Design Ideal Complementary Codes for Multi-Carrier CDMA Systems

    Shucong TIAN  Meng YANG  Jianpeng WANG  Rui WANG  Avik R. ADHIKARY  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    901-905

    AlphaSeq is a new paradigm to design sequencess with desired properties based on deep reinforcement learning (DRL). In this work, we propose a new metric function and a new reward function, to design an improved version of AlphaSeq. We show analytically and also through numerical simulations that the proposed algorithm can discover sequence sets with preferable properties faster than that of the previous algorithm.

  • BOTDA-Based Technique for Measuring Maximum Loss and Crosstalk at Splice Point in Few-Mode Fibers Open Access

    Tomokazu ODA  Atsushi NAKAMURA  Daisuke IIDA  Hiroyuki OSHIDA  

     
    PAPER-Optical Fiber for Communications

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:5
      Page(s):
    504-511

    We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.

1661-1680hit(42807hit)