The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] APPR(525hit)

141-160hit(525hit)

  • A 10-bit 100 MS/s Successive Approximation Register Analog-To-Digital Converter Design

    Jhin-Fang HUANG  Wen-Cheng LAI  Cheng-Gu HSIEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    833-836

    In this paper, a 1.8-V 10-bit 100,MS/s successive approximation register (SAR) analog-to-digital converter (ADC) simulated in a TSMC 0.18-$mu$m CMOS process is presented. By applying ten comparators followed by an asynchronous trigger logic, the proposed SAR ADC achieves high speed operation. Compared to the conventional SAR ADC, there is no significant delay in the digital feedback logic in this design. With the sampling rate limited only by the ten delays of the capacitor DAC settling and comparators quantization, the proposed SAR ADC achieves a peak SNDR of 61.2,dB at 100,MS/s and 80,MS/s, consuming 3.2,mW and 3.1,mW respectively.

  • Low Complexity Cooperative Transmission Design and Optimization for Physical Layer Security of AF Relay Networks

    Chao WANG  Hui-Ming WANG  Weile ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:6
      Page(s):
    1113-1120

    This paper studies the design of cooperative beamforming (CB) and cooperative jamming (CJ) for the physical layer security of an amplify-and-forward (AF) relay network in the presence of multiple multi-antenna eavesdroppers. The secrecy rate maximization (SRM) problem of such a network is to maximize the difference of two concave functions, a problem which is non-convex and has no efficient solution. Based on the inner convex approximation (ICA) and semidefinite relaxation (SDR) techniques, we propose two novel low-complexity schemes to design CB and CJ for SRM in the AF network. In the first strategy, relay nodes adopt the CB only to secure transmission. Based on ICA, this design guarantees convergence to a Karush-Kuhn-Tucker (KKT) solution of the SDR of the original problem. In the second strategy, the optimal joint CB and CJ design is studied and the proposed joint design can guarantee convergence to a KKT solution of the original problem. Moreover, in the second strategy, we prove that SDR always has a rank-1 solution for the SRM problem. Simulation results show the superiority of the proposed schemes.

  • A Hybrid Approach to Electrolaryngeal Speech Enhancement Based on Noise Reduction and Statistical Excitation Generation

    Kou TANAKA  Tomoki TODA  Graham NEUBIG  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Voice Conversion and Speech Enhancement

      Vol:
    E97-D No:6
      Page(s):
    1429-1437

    This paper presents an electrolaryngeal (EL) speech enhancement method capable of significantly improving naturalness of EL speech while causing no degradation in its intelligibility. An electrolarynx is an external device that artificially generates excitation sounds to enable laryngectomees to produce EL speech. Although proficient laryngectomees can produce quite intelligible EL speech, it sounds very unnatural due to the mechanical excitation produced by the device. Moreover, the excitation sounds produced by the device often leak outside, adding to EL speech as noise. To address these issues, there are mainly two conventional approached to EL speech enhancement through either noise reduction or statistical voice conversion (VC). The former approach usually causes no degradation in intelligibility but yields only small improvements in naturalness as the mechanical excitation sounds remain essentially unchanged. On the other hand, the latter approach significantly improves naturalness of EL speech using spectral and excitation parameters of natural voices converted from acoustic parameters of EL speech, but it usually causes degradation in intelligibility owing to errors in conversion. We propose a hybrid approach using a noise reduction method for enhancing spectral parameters and statistical voice conversion method for predicting excitation parameters. Moreover, we further modify the prediction process of the excitation parameters to improve its prediction accuracy and reduce adverse effects caused by unvoiced/voiced prediction errors. The experimental results demonstrate the proposed method yields significant improvements in naturalness compared with EL speech while keeping intelligibility high enough.

  • Solar Photovoltaic Emulator System Based on a Systolic Array Network

    Pedro PEREZ MUÑOZ  Renan QUIJANO CETINA  Manuel FLOTA BAÑUELOS  Alejandro CASTILLO ATOCHE  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:5
      Page(s):
    1119-1120

    A novel real-time solar photovoltaic (SPV) emulator system, based on a systolic array network (SAN), is presented. This architecture follows the piecewise polynomial approximation and parallel computing techniques, and shows its capability to generate high-accuracy I-V, P-V curves, instead of traditional DSP and lookup table-based SPV systems.

  • Developing an HMM-Based Speech Synthesis System for Malay: A Comparison of Iterative and Isolated Unit Training

    Mumtaz Begum MUSTAFA  Zuraidah Mohd DON  Raja Noor AINON  Roziati ZAINUDDIN  Gerry KNOWLES  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:5
      Page(s):
    1273-1282

    The development of an HMM-based speech synthesis system for a new language requires resources like speech database and segment-phonetic labels. As an under-resourced language, Malay lacks the necessary resources for the development of such a system, especially segment-phonetic labels. This research aims at developing an HMM-based speech synthesis system for Malay. We are proposing the use of two types of training HMMs, which are the benchmark iterative training incorporating the DAEM algorithm and isolated unit training applying segment-phonetic labels of Malay. The preferred method for preparing segment-phonetic labels is the automatic segmentation. The automatic segmentation of Malay speech database is performed using two approaches which are uniform segmentation that applies fixed phone duration, and a cross-lingual approach that adopts the acoustic model of English. We have measured the segmentation error of the two segmentation approaches to ascertain their relative effectiveness. A listening test was used to evaluate the intelligibility and naturalness of the synthetic speech produced from the iterative and isolated unit training. We also compare the performance of the HMM-based speech synthesis system with existing Malay speech synthesis systems.

  • Compressive Sensing of Audio Signal via Structured Shrinkage Operators

    Sumxin JIANG  Rendong YING  Peilin LIU  Zhenqi LU  Zenghui ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:4
      Page(s):
    923-930

    This paper describes a new method for lossy audio signal compression via compressive sensing (CS). In this method, a structured shrinkage operator is employed to decompose the audio signal into three layers, with two sparse layers, tonal and transient, and additive noise, and then, both the tonal and transient layers are compressed using CS. Since the shrinkage operator is able to take into account the structure information of the coefficients in the transform domain, it is able to achieve a better sparse approximation of the audio signal than traditional methods do. In addition, we propose a sparsity allocation algorithm, which adjusts the sparsity between the two layers, thus improving the performance of CS. Experimental results demonstrated that the new method provided a better compression performance than conventional methods did.

  • Textual Approximation Methods for Time Series Classification: TAX and l-TAX Open Access

    Abdulla Al MARUF  Hung-Hsuan HUANG  Kyoji KAWAGOE  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    798-810

    A lot of work has been conducted on time series classification and similarity search over the past decades. However, the classification of a time series with high accuracy is still insufficient in applications such as ubiquitous or sensor systems. In this paper, a novel textual approximation of a time series, called TAX, is proposed to achieve high accuracy time series classification. l-TAX, an extended version of TAX that shows promising classification accuracy over TAX and other existing methods, is also proposed. We also provide a comprehensive comparison between TAX and l-TAX, and discuss the benefits of both methods. Both TAX and l-TAX transform a time series into a textual structure using existing document retrieval methods and bioinformatics algorithms. In TAX, a time series is represented as a document like structure, whereas l-TAX used a sequence of textual symbols. This paper provides a comprehensive overview of the textual approximation and techniques used by TAX and l-TAX

  • Efficient Implementation of Statistical Model-Based Voice Activity Detection Using Taylor Series Approximation

    Chungsoo LIM  Soojeong LEE  Jae-Hun CHOI  Joon-Hyuk CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:3
      Page(s):
    865-868

    In this letter, we propose a simple but effective technique that improves statistical model-based voice activity detection (VAD) by both reducing computational complexity and increasing detection accuracy. The improvements are made by applying Taylor series approximations to the exponential and logarithmic functions in the VAD algorithm based on an in-depth analysis of the algorithm. Experiments performed on a smartphone as well as on a desktop computer with various background noises confirm the effectiveness of the proposed technique.

  • Method for Reduction of Field Computation Time for Discrete Ray Tracing Method

    Masafumi TAKEMATSU  Junichi HONDA  Yuki KIMURA  Kazunori UCHIDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:3
      Page(s):
    198-206

    This paper is concerned with a method to reduce the computation time of the Discrete Ray Tracing Method (DRTM) which was proposed to numerically analyze electromagnetic fields above Random Rough Surfaces (RRSs). The essence of DRTM is firstly to search rays between source and receiver and secondly to compute electric fields based on the traced rays. In the DRTM, the method discretizes not only RRSs but also ray tracing procedure. In order to reduce computation time for ray searching, the authors propose to modify the conventional algorithm discretizing RRSs with equal intervals to a new one which discretizes them with unequal intervals according to their profiles. The authors also use an approximation of Fresnel function which enables us to reduce field computation time. The authors discuss the reduction rate for computation time of the DRTM from the numerical view points of ray searching and field computation. Finally, this paper shows how much computation time is reduced by the new method.

  • Worst Case Analysis of Approximation Algorithm of Abrams et al. for the Set k-Cover Problem

    Satoshi FUJITA  

     
    PAPER-Optimizing Algorithms, Parallel and Distributed Computing

      Vol:
    E97-D No:3
      Page(s):
    399-405

    In this paper, we consider the problem of partitioning a given collection of node sets into k collections such that the average size of collections is the largest, where the size of a collection is defined as the cardinarity of the union of the subsets contained in the collection. More concretely, we give an upper bound on the performance ratio of an approximation algorithm proposed by Abrams et al., which is known to have a performance ratio of at least 1-1/e≅0.6321 where e is Napier's constant. The proposed upper bound is 1-(2-d+1√2)d+1/2 for any d≥1 provided that k=o(n) which approaches to 0.75 as d increases.

  • On the Minimum Caterpillar Problem in Digraphs

    Taku OKADA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E97-A No:3
      Page(s):
    848-857

    Suppose that each arc in a digraph D = (V,A) has two costs of non-negative integers, called a spine cost and a leaf cost. A caterpillar is a directed tree consisting of a single directed path (of spine arcs) and leaf vertices each of which is incident to the directed path by exactly one incoming arc (leaf arc). For a given terminal set K ⊆ V, we study the problem of finding a caterpillar in D such that it contains all terminals in K and its total cost is minimized, where the cost of each arc in the caterpillar depends on whether it is used as a spine arc or a leaf arc. In this paper, we first show that the problem is NP-hard for any fixed constant number of terminals with |K| ≥ 3, while it is solvable in polynomial time for at most two terminals. We also give an inapproximability result for any fixed constant number of terminals with |K| ≥ 3. Finally, we give a linear-time algorithm to solve the problem for digraphs with bounded treewidth, where the treewidth for a digraph D is defined as the one for the underlying graph of D. Our algorithm runs in linear time even if |K| = O(|V|), and the hidden constant factor of the running time is just a single exponential of the treewidth.

  • Bitstream-Level Film Noise Cancellation for Damaged Video Playback

    Sinwook LEE  Euee-seon JANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:3
      Page(s):
    562-572

    In this paper, we propose a bitstream-level noise cancellation method for playback applications of damaged video. Most analog video data such as movies, news and historical research videos are now stored in a digital format after a series of conversion processes that include analog-to-digital conversion and compression. In many cases, noise such as blotches and line scratching remaining in analog media are not removed during the conversion process. On the other hand, noise is propagated in the compression stage because most media compression technologies use predictive coding. Therefore, it is imperative to efficiently remove or reduce the artifacts caused by noise as much as possible. In some cases, the video data with historical values are to be preserved without correcting the noise in order not to lose any important information resulting from the noise removal process. However, playback applications of such video data still need to undergo a noise reduction process to ensure picture quality for public viewing. The proposed algorithm identifies the candidate noise blocks at the bitstream-level to directly provide a noise reduction process while decoding the bitstream. Throughout the experimental results, we confirm the efficiency of the proposed method by showing RR and PR values of around 70 percent.

  • Efficient Pedestrian Detection Using Multi-Scale HOG Features with Low Computational Complexity

    Soojin KIM  Kyeongsoon CHO  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:2
      Page(s):
    366-369

    In this paper, an efficient method to reduce computational complexity for pedestrian detection is presented. Since trilinear interpolation is not used, the amount of required operations for histogram of oriented gradient (HOG) feature calculation is significantly reduced. By calculating multi-scale HOG features with integral HOG in a two-stage approach, both high detection rate and speed are achieved in the proposed method.

  • A Router-Aided Hierarchical P2P Traffic Localization Based on Variable Additional Delay Insertion

    Hiep HOANG-VAN  Yuki SHINOZAKI  Takumi MIYOSHI  Olivier FOURMAUX  

     
    PAPER

      Vol:
    E97-B No:1
      Page(s):
    29-39

    Most peer-to-peer (P2P) systems build their own overlay networks for implementing peer selection strategies without taking into account the locality on the underlay network. As a result, a large quantity of traffic crossing internet service providers (ISPs) or autonomous systems (ASes) is generated on the Internet. Controlling the P2P traffic is therefore becoming a big challenge for the ISPs. To control the cost of the cross-ISP/AS traffic, ISPs often throttle and/or even block P2P applications in their networks. In this paper, we propose a router-aided approach for localizing the P2P traffic hierarchically; it features the insertion of additional delay into each P2P packet based on geographical location of its destination. Compared to the existing approaches that solve the problem on the application layer, our proposed method does not require dedicated servers, cooperation between ISPs and P2P users, or modification of existing P2P application software. Therefore, the proposal can be easily utilized by all types of P2P applications. Experiments on P2P streaming applications indicate that our hierarchical traffic localization method not only reduces significantly the inter-domain traffic but also maintains a good performance of P2P applications.

  • An Efficient Algorithm for Weighted Sum-Rate Maximization in Multicell OFDMA Downlink

    Mirza Golam KIBRIA  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Resource Allocation

      Vol:
    E97-A No:1
      Page(s):
    69-77

    This paper considers coordinated linear precoding for rate optimization in downlink multicell, multiuser orthogonal frequency-division multiple access networks. We focus on two different design criteria. In the first, the weighted sum-rate is maximized under transmit power constraints per base station. In the second, we minimize the total transmit power satisfying the signal-to-interference-plus-noise-ratio constraints of the subcarriers per cell. Both problems are solved using standard conic optimization packages. A less complex, fast, and provably convergent algorithm that maximizes the weighted sum-rate with per-cell transmit power constraints is formulated. We approximate the non-convex weighted sum-rate maximization (WSRM) problem with a solvable convex form by means of a sequential parametric convex approximation approach. The second-order cone formulations of an objective function and the constraints of the optimization problem are derived through a proper change of variables, first-order linear approximation, and hyperbolic constraints transformation. This algorithm converges to the suboptimal solution while taking fewer iterations in comparison to other known iterative WSRM algorithms. Numerical results are presented to demonstrate the effectiveness and superiority of the proposed algorithm.

  • Blind CFO Estimation Based on Decision Directed MVDR Approach for Interleaved OFDMA Uplink Systems

    Chih-Chang SHEN  Ann-Chen CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    137-145

    This paper deals with carrier frequency offset (CFO) estimation based on the minimum variance distortionless response (MVDR) criterion without using specific training sequences for interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. In the presence of large CFOs, the estimator is proposed to find a new CFO vector based on the first-order Taylor series expansion of the one initially given. The problem of finding the new CFO vector is formulated as the closed form of a generalized eigenvalue problem, which allows one to readily solve it. Since raising the accuracy of residual CFO estimation can provide more accurate residual CFO compensation, this paper also present a decision-directed MVDR approach to improve the CFO estimation performance. However, the proposed estimator can estimate CFOs with less computation load. Several computer simulation results are provided for illustrating the effectiveness of the proposed blind estimate approach.

  • Improving Cache Partitioning Algorithms for Pseudo-LRU Policies

    Xi ZHANG  Chuanyi LIU  Zhenyu LIU  Dongsheng WANG  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2514-2523

    As the number of concurrently running applications on the chip multiprocessors (CMPs) is increasing, efficient management of the shared last-level cache (LLC) is crucial to guarantee overall performance. Recent studies have shown that cache partitioning can provide benefits in throughput, fairness and quality of service. Most prior arts apply true Least Recently Used (LRU) as the underlying cache replacement policy and rely on its stack property to work properly. However, in commodity processors, pseudo-LRU policies without stack property are commonly used instead of LRU for their simplicity and low storage overhead. Therefore, this study sets out to understand whether LRU-based cache partitioning techniques can be applied to commodity processors. In this work, we instead propose a cache partitioning mechanism for two popular pseudo-LRU policies: Not Recently Used (NRU) and Binary Tree (BT). Without the help of true LRU's stack property, we propose a profiling logic that applies curve approximation methods to derive the hit curve (hit counts under varied way allocations) for an application. We then propose a hybrid partitioning mechanism, which mitigates the gap between the predicted hit curve and the actual statistics. Simulation results demonstrate that our proposal can improve throughput by 15.3% on average and outperforms the stack-estimate proposal by 12.6% on average. Similar results can be achieved in weighted speedup. For the cache configurations under study, it requires less than 0.5% storage overhead compared to the last-level cache. In addition, we also show that profiling mechanism with only one true LRU ATD achieves comparable performance and can further reduce the hardware cost by nearly two thirds compared with the hybrid mechanism.

  • Complex Approximate Message Passing Algorithm for Two-Dimensional Compressed Sensing

    Akira HIRABAYASHI  Jumpei SUGIMOTO  Kazushi MIMURA  

     
    PAPER-Image Processing

      Vol:
    E96-A No:12
      Page(s):
    2391-2397

    The main target of compressed sensing is recovery of one-dimensional signals, because signals more than two-dimension can also be treated as one-dimensional ones by raster scan, which makes the sensing matrix huge. This is unavoidable for general sensing processes. In separable cases like discrete Fourier transform (DFT) or standard wavelet transforms, however, the corresponding sensing process can be formulated using two matrices which are multiplied from both sides of the target two-dimensional signals. We propose an approximate message passing (AMP) algorithm for the separable sensing process. Typically, we suppose DFT for the sensing process, in which the measurements are complex numbers. Therefore, the formulation includes cases in which both target signal and measurements are complex. We show the effectiveness of the proposed algorithm by computer simulations.

  • Basics of Counting Statistics Open Access

    Jun OHKUBO  

     
    INVITED PAPER

      Vol:
    E96-B No:11
      Page(s):
    2733-2740

    In this paper, we briefly review the scheme of counting statistics, in which a probability of the number of monitored or target transitions in a Markov jump process is evaluated. It is generally easy to construct a master equation for the Markov jump process, and the counting statistics enables us to straightforwardly obtain basic equations of the counting statistics from the master equation; the basic equation is used to calculate the cumulant generating function of the probability of the number of target transitions. For stationary cases, the probability is evaluated from the eigenvalue analysis. As for the nonstationary cases, we review a numerical integration scheme to calculate the statistics of the number of transitions.

  • A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique with Computational Experiments

    Etsuji TOMITA  Yoichi SUTANI  Takanori HIGASHI  Mitsuo WAKATSUKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:6
      Page(s):
    1286-1298

    Many problems can be formulated as maximum clique problems. Hence, it is highly important to develop algorithms that can find a maximum clique very fast in practice. We propose new approximate coloring and other related techniques which markedly improve the run time of the branch-and-bound algorithm MCR (J. Global Optim., 37, pp.95–111, 2007), previously shown to be the fastest maximum-clique-finding algorithm for a large number of graphs. The algorithm obtained by introducing these new techniques in MCR is named MCS. It is shown that MCS is successful in reducing the search space quite efficiently with low overhead. Extensive computational experiments confirm the superiority of MCS over MCR and other existing algorithms. It is faster than the other algorithms by orders of magnitude for several graphs. In particular, it is faster than MCR for difficult graphs of very high density and for very large and sparse graphs, even though MCS is not designed for any particular type of graph. MCS can be faster than MCR by a factor of more than 100,000 for some extremely dense random graphs. This paper demonstrates in detail the effectiveness of each new techniques in MCS, as well as the overall contribution.

141-160hit(525hit)