The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] APPR(525hit)

241-260hit(525hit)

  • A Bio-Inspired Approach to Alarm Malware Attacks in Mobile Handsets

    Taejin AHN  Taejoon PARK  

     
    LETTER-Dependable Computing

      Vol:
    E92-D No:4
      Page(s):
    742-745

    With proliferation of smart handsets capable of mobile Internet, the severity of malware attacks targeting such handsets is rapidly increasing, thereby requiring effective countermeasure for them. However, existing signature-based solutions are not suitable for resource-poor handsets due to the excessive run-time overhead of matching against ever-increasing malware pattern database as well as the limitation of detecting well-known malware only. To overcome these drawbacks, we present a bio-inspired approach to discriminate malware (non-self) from normal programs (self) by replicating the processes of biological immune system. Our proposed approach achieves superior performance in terms of detecting 83.7% of new malware or their variants and scalable storage requirement that grows very slowly with inclusion of new malware, making it attractive for use with mobile handsets.

  • Compactness of Family of Fuzzy Sets in L2 Space with Application to Optimal Control

    Takashi MITSUISHI  Yasunari SHIDAMA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    952-957

    The optimization of nonlinear feedback fuzzy system using the product-sum-gravity method is described in this paper. The fuzzy control discussed here is the nonlinear feedback control in which the feedback laws are determined by IF-THEN type fuzzy production rules through product-sum-gravity method. To prove existence of optimal control, we applied compactness of a set of membership functions in L2 space and continuity of the approximate reasoning, and prepared some propositions concerning product-sum-gravity method. By considering fuzzy optimal control problems as problems of finding the minimum (maximum) value of the integral cost (benefit) function on an appropriate set of membership functions, the existence of fuzzy optimal control is shown.

  • Transient Simulation of Voltage and Current Distributions within Transmission Lines

    Panuwat DAN-KLANG  Ekachai LEELARASMEE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:4
      Page(s):
    522-531

    The problem of analyzing transient in transmission line circuits is studied with emphasis on obtaining the transient voltage and current distributions. A new method for solving Telegrapher equation that characterizes the uniform transmission lines is presented. It not only gives the time domain solution of the line terminal voltage and current, but also their distributions within the lines. The method achieves its goal by treating the voltage and current distributions as distributed state variables and transforms the Telegrapher equation into an ordinary differential equation. This allows the coupled transmission lines to be treated as a single component that behaves like other lumped dynamic components, such as capacitors and inductors. Using Backward Differentiation Formulae for time discretization, the transmission line component is converted to its time domain companion model, from which its local truncation error for time step control can be derived. As the shapes of the voltage and current distributions get more complicated with time, they can be approximated by piecewise exponential functions with controllable accuracy. A segmentation algorithm is thus devised so that the line is dynamically bisected to guarantee that the total piecewise exponential approximation error is only a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segment the line before starting the simulation.

  • A Bottom-Up Design Approach of Critically Sampled Contourlet Transform for Efficient Image Representation

    Seisuke KYOCHI  Shizuka HIGAKI  Yuichi TANAKA  Masaaki IKEHARA  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    762-771

    In this paper, a novel design method of critically sampled contourlet transform (CSCT) is proposed. The original CT which consists of Laplacian pyramid and directional filter bank provides efficient frequency plane partition for image representation. However its overcompleteness is not suitable for some applications such as image coding, its critical sampling version has been studied recently. Although several types of the CSCT have been proposed, they have problems on their realization or unnatural frequency plane partition which is different from the original CT. In contrast to the way in conventional design methods based on a "top-down" approach, the proposed method is based on a "bottom-up" one. That is, the proposed CSCT decomposes the frequency plane into small directional subbands, and then synthesizes them up to a target frequency plane partition, while the conventional ones decompose into it directly. By this way, the proposed CSCT can design an efficient frequency division which is the same as the original CT for image representation can be realized. In this paper, its effectiveness is verified by non-linear approximation simulation.

  • A Near-Exact Sum Rate Approximation of Random Beamforming and Its Application to Mode Optimization

    YoHan KIM  HyukJin CHAE  JangHoon YANG  DongKu KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:3
      Page(s):
    1049-1052

    In this letter, a closed form approximation for the average sum rate of random beamforming is derived. It provides a near-exact approximation for arbitrary numbers of beams, users, and received SNR. The approximation is also applied to an average-sense multimode random beamforming scheme which optimizes the number of random beams without any type of instantaneous channel information. The proposed scheme shows better sum rate performance than random beamforming as well as an existing dual mode random beamforming scheme based on instantaneous channel information, while the number of feedback bits for beam index is reduced compared to random beamforming.

  • CMOS Current-Mode Companding Divider

    Kuo-Jen LIN  

     
    LETTER-Electronic Circuits

      Vol:
    E92-C No:3
      Page(s):
    380-382

    A CMOS current-mode companding divider is presented. Currents of both dividend and divisor are compressed into log-domain. Then the logarithm current of divisor is subtracted from the logarithm current of dividend. After expanding the subtraction result, the division function could be achieved. The simulation results indicate that the proposed divider has with good performance at only 1.8 V supply voltage.

  • Action Recognition Using Visual-Neuron Feature

    Ning LI  De XU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E92-D No:2
      Page(s):
    361-364

    This letter proposes a neurobiological approach for action recognition. In this approach, actions are represented by a visual-neuron feature (VNF) based on a quantitative model of object representation in the primate visual cortex. A supervised classification technique is then used to classify the actions. The proposed VNF is invariant to affine translation and scaling of moving objects while maintaining action specificity. Moreover, it is robust to the deformation of actors. Experiments on publicly available action datasets demonstrate the proposed approach outperforms conventional action recognition models based on computer-vision features.

  • A 0.027-mm2 Self-Calibrating Successive Approximation ADC Core in 0.18-µm CMOS

    Yasuhide KURAMOCHI  Akira MATSUZAWA  Masayuki KAWABATA  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    360-366

    We present a 10-bit 1-MS/s successive approximation analog-to-digital converter core including a charge redistribution digital-to-analog converter and a comparator. A new linearity calibration technique enables use of a nearly minimum capacitor limited by kT/C noise. The ADC core without digital control blocks has been fabricated in a 0.18-µm CMOS process and consumes 118 µW at 1.8 V power supply. Also, the active area of ADC core is realized to be 0.027 mm2. The calibration improves the SNDR by 13.4 dB and the SFDR by 21.0 dB. The measured SNDR and SFDR at 1 kHz input are 55.2 dB and 73.2 dB respectively.

  • A Space-Saving Approximation Algorithm for Grammar-Based Compression

    Hiroshi SAKAMOTO  Shirou MARUYAMA  Takuya KIDA  Shinichi SHIMOZONO  

     
    PAPER

      Vol:
    E92-D No:2
      Page(s):
    158-165

    A space-efficient approximation algorithm for the grammar-based compression problem, which requests for a given string to find a smallest context-free grammar deriving the string, is presented. For the input length n and an optimum CFG size g, the algorithm consumes only O(g log g) space and O(n log*n) time to achieve O((log*n)log n) approximation ratio to the optimum compression, where log*n is the maximum number of logarithms satisfying log log log n > 1. This ratio is thus regarded to almost O(log n), which is the currently best approximation ratio. While g depends on the string, it is known that g=Ω(log n) and for strings from k-letter alphabet [12].

  • Approximation Preserving Reductions among Item Pricing Problems

    Ryoso HAMANE  Toshiya ITOH  Kouhei TOMITA  

     
    PAPER

      Vol:
    E92-D No:2
      Page(s):
    149-157

    When a store sells items to customers, the store wishes to determine the prices of the items to maximize its profit. Intuitively, if the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. So it would be hard for the store to decide the prices of items. Assume that the store has a set V of n items and there is a set E of m customers who wish to buy those items, and also assume that each item i ∈ V has the production cost di and each customer ej ∈ E has the valuation vj on the bundle ej ⊆ V of items. When the store sells an item i ∈ V at the price ri, the profit for the item i is pi=ri-di. The goal of the store is to decide the price of each item to maximize its total profit. We refer to this maximization problem as the item pricing problem. In most of the previous works, the item pricing problem was considered under the assumption that pi ≥ 0 for each i ∈ V, however, Balcan, et al. [In Proc. of WINE, LNCS 4858, 2007] introduced the notion of "loss-leader," and showed that the seller can get more total profit in the case that pi < 0 is allowed than in the case that pi < 0 is not allowed. In this paper, we derive approximation preserving reductions among several item pricing problems and show that all of them have algorithms with good approximation ratio.

  • Flexible Timed-Release Encryption

    Maki YOSHIDA  Toru FUJIWARA  

     
    LETTER

      Vol:
    E92-A No:1
      Page(s):
    222-225

    This paper presents a new scheme for Timed-Release Encryption (TRE), which is mainly designed for global use. TRE aims to control the timing of disclosing information. The major approach to TRE assumes that any participants can receive a time token broadcasted by a trusted agent, called a time server. Our scheme is based on this approach and allows participants to generate an encrypted message that can be decrypted using designated or any authenticated time servers including even those which are authenticated after encryption. In this sense, our scheme has a more flexible framework in terms of message decryption.

  • Computationally Efficient Cepstral Domain Feature Compensation

    Woohyung LIM  Chang Woo HAN  Nam Soo KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E92-D No:1
      Page(s):
    86-89

    In this letter, we propose a novel approach to feature compensation performed in the cepstral domain. Processing in the cepstral domain has the advantage that the spectral correlation among different frequencies is taken into consideration. By introducing a linear approximation with diagonal covariance assumption, we modify the conventional log-spectral domain feature compensation technique to fit to the cepstral domain. The proposed approach shows significant improvements in the AURORA2 speech recognition task.

  • TE Plane Wave Reflection and Transmission from a Two-Dimensional Random Slab

    Yasuhiko TAMURA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    77-84

    This paper reexamines reflection and transmission of a TE plane wave from a two-dimensional random slab discussed in the previous paper [IEICE Trans. Electron., Vol.E79-C, no.10, pp.1327-1333, October 1996] by means of the stochastic functional approach with the multiply renormalizing approximation. A random wavefield representation is explicitly shown in terms of a Wiener-Hermite expansion. The first-order incoherent scattering cross section and the optical theorem are numerically calculated. Enhanced scattering as gentle peaks or dips on the angular distribution of the incoherent scattering is reconfirmed in the directions of reflection and backscattering, and is newly found in the directions of forward scattering and 'symmetrical forward scattering.' The mechanism of enhanced scattering is deeply discussed.

  • Soft versus Hard Cooperative Energy Detection under Low SNR

    Junyang SHEN  Gang XIE  Siyang LIU  Lingkang ZENG  Jinchun GAO  Yuanan LIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3732-3735

    Amidst conflicting views about whether soft cooperative energy detection scheme (SCEDS) outperforms hard cooperative energy detection scheme (HCEDS) greatly in cognitive radio, we establish the bridge that mathematically connects SCEDS and HCEDS by closed approximations. Through this bridge, it is demonstrate that, if the number of detectors of HCEDS is 1.6 times as that of SCEDS, they have nearly the same performance which is confirmed by numerical simulations, enabling a quantitative evaluation of the relation between them and a resolution of the conflicting views.

  • Single Carrier Frequency Offset Estimation with Low Threshold Effect

    Ju-Ya CHEN  Meng-Hong HSIEH  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3364-3367

    Frequency offset estimation is an important technique in receiver design of wireless communications. In many applications, sampled single frequency tone is selected as training symbol/sequence for frequency synchronization. Under this assumption, frequency offset estimation can be regarded as the problem of single carrier frequency offset estimation. In this Letter, an approximate maximum likelihood frequency estimator is proposed. This estimator is efficient at moderate and high SNR's. Compared with other estimators, the proposed estimator is less sensitive to the variance threshold and offers feasible levels of computation complexity. The proposed estimator is suitable for high frequency offset cases and coarse/fine frequency synchronization applications.

  • New PAPR Reduction in OFDM System Using Hybrid of PTS-APPR Methods with Coded Side Information Technique

    Chusit PRADABPET  Shingo YOSHIZAWA  Yoshikazu MIYANAGA  Kobchai DEJHAN  

     
    PAPER-OFDM

      Vol:
    E91-A No:10
      Page(s):
    2973-2979

    In this paper, we propose a new PAPR reduction by using the hybrid of a partial transmit sequences (PTS) and an adaptive peak power reduction (APPR) methods with coded side information (SI) technique. These methods are used in an Orthogonal Frequency Division Multiplexing (OFDM) system. The OFDM employs orthogonal sub-carriers for data modulation. These sub-carriers unexpectedly present a large Peak to Average Power Ratio (PAPR) in some cases. In order to reduce PAPR, the sequence of input data is rearranged by PTS. The APPR method is also used to controls the peak level of modulation signals by an adaptive algorithm. A proposed reduction method consists of these two methods and realizes both advantages at the same time. In order to make the optimum condition on PTS for PAPR reduction, a quite large calculation cost must be demanded and thus it is impossible to obtain the optimum PTS. In the proposed method, by using the pseudo-optimum condition with a coded SI technique, the total calculation cost becomes drastically reduced. In simulation results, the proposed method shows the improvement on PAPR and also reveals the high performance on bit error rate (BER) of an OFDM system.

  • JPEG Compatible Raw Image Coding Based on Polynomial Tone Mapping Model

    Masahiro OKUDA  Nicola ADAMI  

     
    PAPER-Image Coding

      Vol:
    E91-A No:10
      Page(s):
    2928-2933

    In this paper, we propose a coding method for camera raw images with high dynamic ranges. Our encoder has two layers. In the first layer, 24 bit low dynamic range image is encoded by a conventional codec, and then the residual image that represents the difference between the raw image and its approximation is encoded in the second layer. The approximation is derived by a polynomial fitting. The main advantage of this approach is that applying the polynomial model reduces the correlation between the raw and 24 bit images, which increases coding efficiency. Experiments shows compression efficiency is significantly improved by taking an inverse tone mapping into account.

  • Analysis and Approximation of Statistical Distribution of Eigenvalues in i.i.d. MIMO Channels under Rayleigh Fading

    Tetsuki TANIGUCHI  Shen SHA  Yoshio KARASAWA  

     
    PAPER-Communication Theory

      Vol:
    E91-A No:10
      Page(s):
    2808-2817

    In multiple input multiple output (MIMO) communication systems, eigenvalues of channel correlation matrices play an essential role for the performance analysis, and particularly the investigation about their behavior under time-variant environment ruled by a certain statistics is an important problem. This paper first gives the theoretical expressions for the marginal distributions of all the ordered eigenvalues of MIMO correlation matrices under i.i.d. (independent and identically distributed) Rayleigh fading environment. Then, an approximation method of those marginal distributions is presented: We show that the theory of SIMO space diversity using maximal ratio combining (MRC) is applicable to the approximation of statistical distributions of all eigenvalues in MIMO systems with the same number of diversity branches. The derived approximation has a monomial form suitable for the calculation of various performance measures utilized in MIMO systems. Through computer simulations, the effectiveness of the proposed method is demonstrated.

  • Autonomous Decentralized System and Its Strategic Approach for Research and Development

    Kinji MORI  

     
    INVITED PAPER

      Vol:
    E91-D No:9
      Page(s):
    2227-2232

    Autonomous Decentralized System (ADS) has been making progress in these 31 years since it was proposed in 1977. During these long years in the rapidly advancing computer and communication technologies, the ADS concept has not been changed but its technologies have been growing in accordance with the change and diversity of the social, economical and personal requirements and through the globalization of the market and the restructuring organizations. The ADS technologies are systematized to cover all processes of system design, operation, maintenance and modification. This paper reviews the work done in fields of ADS in past 31 years from not only technological perspectives, but it also encompasses users requirements and value, system design, industrial activity, academic activity and standardization [1]-[26]. Moreover the new directions of the ADS are suggested.

  • Two-Quadrant CMOS Plug-in Divider

    Kuo-Jen LIN  

     
    LETTER-Circuit Theory

      Vol:
    E91-A No:9
      Page(s):
    2682-2684

    A two-quadrant CMOS current-mode plug-in divider using a compact 1/x device is presented. The mismatch errors of 1/x device cancel part of mismatch errors of the proposed divider. The simulation results indicate that the plug-in divider is feasible by the proposed approximation method. The adjustable 1/x device could be applied in difference ranges.

241-260hit(525hit)