The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

3621-3640hit(18690hit)

  • Simulational Approach to Realize a Triplexer Based on Bandpass Filters Using Wideband Resonators

    Kosei TANII  Koji WADA  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    751-760

    A triplexer is presented by using bandpass filters (BPFs) which consist of two-stage of wideband resonator and additional open-circuited stubs. The resonator is firstly proposed by using a coupled-line and an inductive element loaded transmission line. This resonator produces the wide passband by a dual-mode resonance, high attenuation level at stopbands, and the steepness at the edge of the passband due to the attenuation poles. In order to understand the behavior of the resonator, the conditions for resonances and attenuation poles are especially solved and their current densities are analyzed by an electromagnetic simulation. Secondly, three types of wideband BPFs are constituted and finally a wideband triplexer is composed by using these BPFs. The basic characteristics of the proposed BPFs and the matching methodology enable to realize the triplexer whose desired passbands are around 3.1-5.1 GHz, 5.85-7.85 GHz, and 8.6-10.6 GHz with high isolation performance at the other passbands. The proposed triplexer is predominance in the flexible bandwidth or wide operating frequency range. All the BPFs and the triplexer are implemented on a planar printed circuit board assuming the use of the microstrip line structure.

  • Asymmetric Leakage from Multiplier and Collision-Based Single-Shot Side-Channel Attack

    Takeshi SUGAWARA  Daisuke SUZUKI  Minoru SAEKI  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1323-1333

    The single-shot collision attack on RSA proposed by Hanley et al. is studied focusing on the difference between two operands of multiplier. It is shown that how leakage from integer multiplier and long-integer multiplication algorithm can be asymmetric between two operands. The asymmetric leakage is verified with experiments on FPGA and micro-controller platforms. Moreover, we show an experimental result in which success and failure of the attack is determined by the order of operands. Therefore, designing operand order can be a cost-effective countermeasure. Meanwhile we also show a case in which a particular countermeasure becomes ineffective when the asymmetric leakage is considered. In addition to the above main contribution, an extension of the attack by Hanley et al. using the signal-processing technique of Big Mac Attack is presented.

  • Optimized Binary Search with Multiple Collision Bits Resolution Anti-Collision Algorithm for Efficient RFID Tag Identification

    Younghwan JUNG  Daehee KIM  Sunshin AN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:7
      Page(s):
    1494-1498

    In this paper, we analyze two representative tree-based RFID anti-collision algorithms: the Query Tree protocol and the Binary Search algorithm. Based on the advantages and disadvantages of the two algorithms, we propose and evaluate two optimized anti-collision algorithms: the Optimized Binary Search, which performs better than the Query Tree Protocol with the same tag-side overhead, and the Optimized Binary Search with Multiple Collision Bits Resolution algorithm, which performs the best with an acceptable increase in tag-side processing overhead.

  • An Online Task Placement Algorithm Based on MER Enumeration for Partially Reconfigurable Device

    Tieyuan PAN  Li ZHU  Lian ZENG  Takahiro WATANABE  Yasuhiro TAKASHIMA  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1345-1354

    Recently, due to the development of design and manufacturing technologies for VLSI systems, an embedded system becomes more and more complex. Consequently, not only the performance of chips, but also the flexibility and dynamic adaptation of the implemented systems are required. To achieve these requirements, a partially reconfigurable device is promising. In this paper, we propose an efficient data structure to manage the reconfigurable units. And then, on the assumption that each task utilizes the rectangle shaped resources, a very simple MER enumeration algorithm based on this data structure is proposed. By utilizing the result of MER enumeration, the free space on the reconfigurable device can be used sufficiently. We analyze the complexity of the proposed algorithm and confirm its efficiency by experiments.

  • Wide-Range and Fast-Tracking Non-Data-Aided Frequency Offset Estimator for QAM Optical Coherent Receivers

    Tadao NAKAGAWA  Takayuki KOBAYASHI  Koichi ISHIHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:7
      Page(s):
    1416-1425

    This paper describes a blind frequency offset estimator (FOE) with wide frequency range for coherent quadrature amplitude modulation (QAM) receivers. The FOE combines a spectrum-based frequency offset estimation algorithm as a coarse estimator with a frequency offset estimation algorithm using the periodogram as a fine estimator. To establish our design methodology, each block of the FOE is rigorously analyzed by using formulas and the minimum fast Fourier transform (FFT) size that generates a frequency spectrum for both the coarse and fine estimators is determined. The coarse estimator's main feature is that all estimation processes are carried out in the frequency domain, which yields convergence more than five times faster than that of conventional estimators. The estimation frequency range of the entire FOE is more than 1.8 times wider than that of conventional FOEs. Experiments on coherent optical 64-ary QAM (64-QAM) reveal that frequency offset estimation can be achieved under a frequency offset value greater than the highest value of the conventional estimation range.

  • Fast Estimation of Field in the Shadow Zone for Finite Cylindrical Structures by Modified Edge Representation (MER) in Compact Range Communication

    Maifuz ALI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1541-1549

    The 60 GHz band compact-range communication is very promising for short-time, short distance communication. Unfortunately, due to the short wavelengths in this frequency band the shadowing effects caused by human bodies, furniture, etc are severe and need to be modeled properly. The numerical methods like the finite-difference time-domain method (FDTD), the finite-element method (FEM), the method of moments (MoM) are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Ray-based approaches like the geometrical theory of diffraction (GTD), uniform geometrical theory of diffraction (UTD), uniform asymptotic theory of diffraction (UAT) are effective and popular solutions but suffer from computation of corner-diffracted field, field at the caustics. Fresnel zone number (FZN) adopted modified edge representation (MER) equivalent edge current (EEC) is an accurate and fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts distances, rather than the angles used in GTD, UTD or UAT but still provides uniform and highly accurate fields everywhere including geometrical boundaries. Previous work verified this method for planar scatterers. In this work, FZN MER EEC is used to compute field distribution in the millimeter-wave compact range communication in the presence of three dimensional scatterers, where shadowing effects rather than multi-path dominate the radio environments. First, circular cylinder is disintegrated into rectangular plate and circular disks and then FZN MER is applied along with geodesic path loss. The dipole wave scattering from perfectly conducting circular cylinder is discussed as numerical examples.

  • High-Efficient Frame Aggregation with Frame Size Adaptation for Downlink MU-MIMO Wireless LANs

    Yoshihide NOMURA  Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1584-1592

    This paper investigates a frame aggregation (FA) technique in the medium access control (MAC) layer for downlink multi-user multiple input multiple output (MU-MIMO) channels in wireless local area networks (WLANs), and proposes a high-efficient FA scheme that ehances system performance: transmission performance and fairness in communication between mobile terminals (MTs). The proposed FA scheme employs novel criteria for selecting receiving MTs and wireless frame setting with a frame size adaptation mechanism for MU-MIMO transmissions. The proposed receiving MT selection gives higher priority to the MTs expecting higher throughput in the next MU-MIMO transmission and having large amount transmission data while reducing signaling overhead, leading to improvements in system throughput and fairness in communication. The proposed wireless frame setting, which employs hybrid A-MSDU/A-MPDU FA, achieves frame error rate (FER) better than the requirement from communication services by using A-MSDU frame size adaptation. Through system-level simulation, the effectiveness of the proposed scheme is validated for downlink MU-MIMO channels in WLANs.

  • A Simple Approximation Formula for Numerical Dispersion Error in 2-D and 3-D FDTD Method

    Jun SONODA  Keimei KAINO  Motoyuki SATO  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    793-796

    The finite-difference time-domain (FDTD) method has been widely used in recent years to analyze the propagation and scattering of electromagnetic waves. Because the FDTD method has second-order accuracy in space, its numerical dispersion error arises from truncated higher-order terms of the Taylor expansion. This error increases with the propagation distance in cases of large-scale analysis. The numerical dispersion error is expressed by a dispersion relation equation. It is difficult to solve this nonlinear equation which have many parameters. Consequently, a simple formula is necessary to substitute for the dispersion relation error. In this study, we have obtained a simple formula for the numerical dispersion error of 2-D and 3-D FDTD method in free space propagation.

  • Multiple-Object Tracking in Large-Scale Scene

    Wenbo YUAN  Zhiqiang CAO  Min TAN  Hongkai CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/04/21
      Vol:
    E99-D No:7
      Page(s):
    1903-1909

    In this paper, a multiple-object tracking approach in large-scale scene is proposed based on visual sensor network. Firstly, the object detection is carried out by extracting the HOG features. Then, object tracking is performed based on an improved particle filter method. On the one hand, a kind of temporal and spatial dynamic model is designed to improve the tracking precision. On the other hand, the cumulative error generated from evaluating particles is eliminated through an appearance model. In addition, losses of the tracking will be incurred for several reasons, such as occlusion, scene switching and leaving. When the object is in the scene under monitoring by visual sensor network again, object tracking will continue through object re-identification. Finally, continuous multiple-object tracking in large-scale scene is implemented. A database is established by collecting data through the visual sensor network. Then the performances of object tracking and object re-identification are tested. The effectiveness of the proposed multiple-object tracking approach is verified.

  • A Conditional Dependency Based Probabilistic Model Building Grammatical Evolution

    Hyun-Tae KIM  Hyun-Kyu KANG  Chang Wook AHN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/04/11
      Vol:
    E99-D No:7
      Page(s):
    1937-1940

    In this paper, a new approach to grammatical evolution is presented. The aim is to generate complete programs using probabilistic modeling and sampling of (probability) distribution of given grammars. To be exact, probabilistic context free grammars are employed and a modified mapping process is developed to create new individuals from the distribution of grammars. To consider problem structures in the individual generation, conditional dependencies between production rules are incorporated into the mapping process. Experiments confirm that the proposed algorithm is more effective than existing methods.

  • Accuracy Assessment of FDTD Method for the Analysis of Sub-Wavelength Photonic Structures

    Yasuo OHTERA  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    780-787

    FDTD (Finite-Difference Time-Domain) method has been widely used for the analysis of photonic devices consisting of sub-wavelength structures. In recent years, increasing efforts have been made to implement the FDTD on GPGPUs (General-Purpose Graphic Processing Units), to shorten simulation time. On the other hand, it is widely recognized that most of the middle- and low-end GPGPUs have difference of computational performance, between single-precision and double-precision type arithmetics. Therefore the type selection of single/double precision for electromagnetic field variables in FDTD becomes a key issue from the viewpoint of the total simulation performance. In this study we investigated the difference of results between the use of single-precision and double-precision. As a most fundamental sub-wavelength photonic structure, we focused on an alternating multilayer (one dimensional periodic structure). Obtained results indicate that significant difference appears for the amplitudes of higher order spatial harmonic waves.

  • Area-Efficient Soft-Error Tolerant Datapath Synthesis Based on Speculative Resource Sharing

    Junghoon OH  Mineo KANEKO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1311-1322

    As semiconductor technologies have advanced, the reliability problem caused by soft-errors is becoming one of the serious issues in LSIs. Moreover, multiple component errors due to single soft-errors also have become a serious problem. In this paper, we propose a method to synthesize multiple component soft-error tolerant application-specific datapaths via high-level synthesis. The novel feature of our method is speculative resource sharing between the retry parts and the secondary parts for time overhead mitigation. A scheduling algorithm using a special priority function to maximize speculative resource sharing is also an important feature of this study. Our approach can reduce the latency (schedule length) in many applications without deterioration of reliability and chip area compared with conventional datapaths without speculative resource sharing. We also found that our method is more effective when a computation algorithm possesses higher parallelism and a smaller number of resources is available.

  • Efficient Residual Coding Method of Spatial Audio Object Coding with Two-Step Coding Structure for Interactive Audio Services

    Byonghwa LEE  Kwangki KIM  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2016/04/08
      Vol:
    E99-D No:7
      Page(s):
    1949-1952

    In interactive audio services, users can render audio objects rather freely to match their desires and the spatial audio object coding (SAOC) scheme is fairly good both in the sense of bitrate and audio quality. But rather perceptible audio quality degradation can occur when an object is suppressed or played alone. To complement this, the SAOC scheme with Two-Step Coding (SAOC-TSC) was proposed. But the bitrate of the side information increases two times compared to that of the original SAOC due to the bitrate needed for the residual coding used to enhance the audio quality. In this paper, an efficient residual coding method of the SAOC-TSC is proposed to reduce the side information bitrate without audio quality degradation or complexity increase.

  • An Error-Propagation Minimization Based Signal Selection Scheme for QRM-MLD

    Ilmiawan SHUBHI  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1566-1576

    Recently, multi-user multiple-input multiple-output (MU-MIMO) systems are being widely studied. For interference cancellation, MU-MIMO commonly uses spatial precoding techniques. These techniques, however, require the transmitters to have perfect knowledge of the downlink channel state information (CSI), which is hard to achieve in high mobility environments. Instead of spatial precoding, a collaborative interference cancellation (CIC) technique can be implemented for these environments. In CIC, mobile stations (MSs) collaborate and share their received signals to increase the demultiplexing capabilities. To obtain efficient signal-exchange between collaborating users, signal selection can be implemented. In this paper, a signal selection scheme suitable for a QRM-MLD algorithm is proposed. The proposed scheme uses the minimum Euclidean distance criterion to obtain an optimum bit error rate (BER) performance. Numerical results obtained through computer simulations show that the proposed scheme is able to provide BER performance near to that of MLD even when the number of candidates in QRM-MLD is relatively small. In addition, the proposed scheme is feasible to implement owing to its low computational complexity.

  • Defending against DDoS Attacks under IP Spoofing Using Image Processing Approach

    Tae Hwan KIM  Dong Seong KIM  Hee Young JUNG  

     
    PAPER-Internet

      Vol:
    E99-B No:7
      Page(s):
    1511-1522

    This paper presents a novel defense scheme for DDoS attacks that uses an image processing method. This scheme especially focused on the prevalence of adjacent neighbor spoofing, called subnet spoofing. It is rarely studied and there is few or no feasible approaches than other spoofing attacks. The key idea is that a “DDoS attack with IP spoofing” is represented as a specific pattern such as a “line” on the spatial image planes, which can be recognized through an image processing technique. Applying the clustering technique to the lines makes it possible to identify multiple attack source networks simultaneously. For the identified networks in which the zombie hosts reside, we then employ a signature-based pattern extraction algorithm, called a pivoted movement, and the DDoS attacks are filtered by correlating the IP and media access control pairing signature. As a result, this proposed scheme filters attacks without disturbing legitimate traffic. Unlike previous IP traceback schemes such as packet marking and path fingerprinting, which try to diagnose the entire attack path, our proposed scheme focuses on identifying only the attack source. Our approach can achieve an adaptive response to DDoS attacks, thereby mitigating them at the source, while minimizing the disruption of legitimate traffic. The proposed scheme is analyzed and evaluated on the IPv4 and IPv6 network topology from CAIDA, the results of which show its effectiveness.

  • RTCO: Reliable Tracking for Continuous Objects Using Redundant Boundary Information in Wireless Sensor Networks

    Sang-Wan KIM  Yongbin YIM  Hosung PARK  Ki-Dong NAM  Sang-Ha KIM  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1464-1480

    Energy-efficient tracking of continuous objects such as fluids, gases, and wild fires is one of the important challenging issues in wireless sensor networks. Many studies have focused on electing fewer nodes to report the boundary information of continuous objects for energy saving. However, this approach of using few reporting packets is very sensitive to packet loss. Many applications based on continuous objects tracking require timely and precise boundary information due to the danger posed by the objects. When transmission of reporting packets fails, applications are unable to track the boundary reliably and a delay is imposed to recover. The transmission failure can fatally degrade application performance. Thus, it is necessary to consider just-in-time recovery for reliable continuous object tracking. Nevertheless, most schemes did not consider the reliable tracking to handle the situation that packet loss happen. Recently, a scheme called I-COD with retransmission was proposed to recover lost packets but it leads to increasing both the energy consumption and the tracking latency owing to the retransmission. Thus, we propose a reliable tracking scheme that uses fast recovery with the redundant boundary information to track continuous objects in real-time and energy-efficiently. In the proposed scheme, neighbor nodes of boundary nodes gather the boundary information in duplicate and report the redundant boundary information. Then the sink node can recover the lost packets fast by using the redundant boundary information. The proposed scheme provides the reliable tracking with low latency and no retransmissions. In addition, the proposed scheme saves the energy by electing fewer nodes to report the boundary information and performing the recovery without retransmissions. Our simulation results show that the proposed scheme provides the energy-efficient and reliable tracking in real-time for the continuous objects.

  • Stimulating Multi-Service Forwarding under Node-Selfishness Information in Selfish Wireless Networks

    Jinglei LI  Qinghai YANG  Kyung Sup KWAK  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1426-1434

    In this paper, we investigate multi-service forwarding in selfish wireless networks (SeWN) with selfish relay nodes (RN). The RN's node-selfishness is characterized from the perspectives of its residual energy and the incentive paid by the source, by which the degree of intrinsic selfishness (DeIS) and the degree of extrinsic selfishness (DeES) are defined. Meanwhile, a framework of the node-selfishness management is conceived to extract the RNs' node-selfishness information (NSI). Based on the RN's NSI, the expected energy cost and expected service profit are determined for analyzing the effect of the RN's node-selfishness on the multi-service forwarding. Moreover, the optimal incentive paid by the source is obtained for minimizing its cost and, at the same time, effectively stimulating the multi-service delivery. Simulation validate our analysis.

  • Linear Programming Phase Feeding Method for Phased-Array Scanning

    Yi ZHANG  Guoqiang ZHAO  Houjun SUN  Mang HE  Qiang CHEN  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E99-C No:7
      Page(s):
    892-894

    Digital phase shifters are widely used to achieve space scanning in phased array antenna, and beam pointing accuracy depends on the bit number and resolution of the digital phase shifter. This paper proposes a novel phase feeding method to reduce the phase quantization error effects. A linear formula for the beam pointing deviation of a linear uniform array in condition of phase quantization error is derived, and the linear programming algorithm is introduced to achieve the minimum beam pointing deviation. Simulations are based on the pattern of the phased array, which gives each element a certain quantization phase error to find the beam pointing deviation. The novel method is then compared with previous methods. Examples show that a 32-element uniform linear array with 5-bit phase shifters using the proposed method can achieve a higher beam-steering accuracy than the same array with 11-bit phase shifters.

  • Underground Facility Management System Supporting Heterogeneous Duplex Communication

    Seokhyun SON  Myoungjin KIM  Hyoseop SHIN  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:7
      Page(s):
    1478-1480

    In this letter, an underground facility management system for effective underground facility management is suggested. The present underground facility management system uses a wired and wireless duplex communication method to enable seamless communication, and rapid responses to any failures encountered. In this letter, the architecture and components of underground facility management system supporting heterogeneous duplex communication is suggested, and relevant work flow is presented.

  • Efficient Aging-Aware SRAM Failure Probability Calculation via Particle Filter-Based Importance Sampling

    Hiromitsu AWANO  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1390-1399

    An efficient Monte Carlo (MC) method for the calculation of failure probability degradation of an SRAM cell due to negative bias temperature instability (NBTI) is proposed. In the proposed method, a particle filter is utilized to incrementally track temporal performance changes in an SRAM cell. The number of simulations required to obtain stable particle distribution is greatly reduced, by reusing the final distribution of the particles in the last time step as the initial distribution. Combining with the use of a binary classifier, with which an MC sample is quickly judged whether it causes a malfunction of the cell or not, the total number of simulations to capture the temporal change of failure probability is significantly reduced. The proposed method achieves 13.4× speed-up over the state-of-the-art method.

3621-3640hit(18690hit)