The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

3781-3800hit(18690hit)

  • Topic Representation of Researchers' Interests in a Large-Scale Academic Database and Its Application to Author Disambiguation

    Marie KATSURAI  Ikki OHMUKAI  Hideaki TAKEDA  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    1010-1018

    It is crucial to promote interdisciplinary research and recommend collaborators from different research fields via academic database analysis. This paper addresses a problem to characterize researchers' interests with a set of diverse research topics found in a large-scale academic database. Specifically, we first use latent Dirichlet allocation to extract topics as distributions over words from a training dataset. Then, we convert the textual features of a researcher's publications to topic vectors, and calculate the centroid of these vectors to summarize the researcher's interest as a single vector. In experiments conducted on CiNii Articles, which is the largest academic database in Japan, we show that the extracted topics reflect the diversity of the research fields in the database. The experiment results also indicate the applicability of the proposed topic representation to the author disambiguation problem.

  • Safety Evaluation for Upgraded Avionics System

    Chao ZHANG  Xiaomu SHI  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E99-A No:4
      Page(s):
    849-852

    Safety is the foremost requirement of avionics systems on aircraft. So far, avionics systems have evolved into an integrated system, i.e., integrated avionics system, and the derivative functions occur when the avionics systems are upgraded. However, the traditional safety analysis method is insufficient to be utilized in upgraded avionics systems due to these derivative functions. In this letter, a safety evaluation scheme is proposed to quantitatively evaluate the safety of the upgraded avionics systems. All the functions including the derivative functions can be traced and covered. Meanwhile, a set of safety issues based on different views is established to evaluate the safety capability from three layers, i.e., the mission layer, function layer and resource layer. The proposed scheme can be considered as an efficient scheme in the safety validation and verification in the upgraded avionics systems.

  • Hardware Oriented Enhanced Category Determination Based on CTU Boundary Deblocking Strength Prediction for SAO in HEVC Encoder

    Gaoxing CHEN  Zhenyu PEI  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:4
      Page(s):
    788-797

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the coding accuracy, HEVC adopts sample adaptive offset (SAO), which reduces the distortion of reconstructed pixels using classification based non-linear filtering. In the traditional coding tree unit (CTU) grain based VLSI encoder implementation, during the pixel classification stage, SAO cannot use the raw samples in the boundary of the current CTU because these pixels have not been processed by deblocking filter (DF). This paper proposes a hardware-oriented category determination algorithm based on estimating the deblocking strengths on CTU boundaries and selectively adopting the promising samples in these areas during SAO classification. Compared with HEVC test mode (HM11.0), experimental results indicate that the proposed method achieves an average 0.13%, 0.14%, and 0.12% BD-bitrate reduction (equivalent to 0.0055dB, 0.0058dB, and 0.0097dB increases in PSNR) in CTU sizes of 64 × 64, 32 × 32, and 16 × 16, respectively.

  • Impact and High-Pitch Noise Suppression Based on Spectral Entropy

    Arata KAWAMURA  Noboru HAYASAKA  Naoto SASAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E99-A No:4
      Page(s):
    777-787

    We propose an impact and high-pitch noise-suppression method based on spectral entropy. Spectral entropy takes a large value for flat spectral amplitude and a small value for spectra with several lines. We model the impact noise as a flat spectral signal and its damped oscillation as a high-pitch periodic signal consisting of spectra with several lines. We discriminate between the current noise situations by using spectral entropy and adaptively change the noise-suppression parameters used in a zero phase-based impact-noise-suppression method. Simulation results show that the proposed method can improve the perceptual evaluation of the speech quality and speech-recognition rate compared to conventional methods.

  • A Healthcare Information System for Secure Delivery and Remote Management of Medical Records

    Hyoung-Kee CHOI  Ki-Eun SHIN  Hyoungshick KIM  

     
    PAPER-Privacy protection in information systems

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    883-890

    With the rapid merger of healthcare business and information technology, more healthcare institutions and medical practices are sharing information. Since these records often contain patients' sensitive personal information, Healthcare Information Systems (HISs) should be properly designed to manage these records in a secure manner. We propose a novel security design for the HIS complying with the security and privacy rules. The proposed system defines protocols to ensure secure delivery of medical records over insecure public networks and reliable management of medical record in the remote server without incurring excessive costs to implement services for security. We demonstrate the practicality of the proposed system through a security analysis and performance evaluation.

  • Efficient Algorithm for Math Formula Semantic Search

    Shunsuke OHASHI  Giovanni Yoko KRISTIANTO  Goran TOPIC  Akiko AIZAWA  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    979-988

    Mathematical formulae play an important role in many scientific domains. Regardless of the importance of mathematical formula search, conventional keyword-based retrieval methods are not sufficient for searching mathematical formulae, which are structured as trees. The increasing number as well as the structural complexity of mathematical formulae in scientific articles lead to the necessity for large-scale structure-aware formula search techniques. In this paper, we formulate three types of measures that represent distinctive features of semantic similarity of math formulae, and develop efficient hash-based algorithms for the approximate calculation. Our experiments using NTCIR-11 Math-2 Task dataset, a large-scale test collection for math information retrieval with about 60-million formulae, show that the proposed method improves the search precision while also keeps the scalability and runtime efficiency high.

  • Construction of odd-Variable Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity

    Shaojing FU  Jiao DU  Longjiang QU  Chao LI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:4
      Page(s):
    853-855

    Rotation symmetric Boolean functions (RSBFs) that are invariant under circular translation of indices have been used as components of different cryptosystems. In this paper, odd-variable balanced RSBFs with maximum algebraic immunity (AI) are investigated. We provide a construction of n-variable (n=2k+1 odd and n ≥ 13) RSBFs with maximum AI and nonlinearity ≥ 2n-1-¥binom{n-1}{k}+2k+2k-2-k, which have nonlinearities significantly higher than the previous nonlinearity of RSBFs with maximum AI.

  • A Construction of Optimal 16-QAM+ Sequence Sets with Zero Correlation Zone

    Yubo LI  Kai LIU  Chengqian XU  

     
    PAPER-Information Theory

      Vol:
    E99-A No:4
      Page(s):
    819-825

    In this correspondence, a method of constructing optimal zero correlation zone (ZCZ) sequence sets over the 16-QAM+ constellation is presented. Based on 16-QAM orthogonal matrices and perfect ternary sequences, 16-QAM+ ZCZ sequence sets are obtained. The resulting ZCZ sequence sets are optimal with respect to the Tang-Fan-Matsufuji bound. Moreover, methods for transforming binary or quaternary orthogonal matrices into 16-QAM orthogonal matrices are proposed. The proposed 16-QAM+ ZCZ sequence sets can be potentially applied to communication systems using a 16-QAM constellation to remove the multiple access interference (MAI) and multi-path interference (MPI).

  • Actuator-Control Circuit Based on OTFTs and Flow-Rate Estimation for an All-Organic Fluid Pump

    Lei CHEN  Tapas Kumar MAITI  Hidenori MIYAMOTO  Mitiko MIURA-MATTAUSCH  Hans Jürgen MATTAUSCH  

     
    PAPER-Systems and Control

      Vol:
    E99-A No:4
      Page(s):
    798-805

    In this paper, we report the design of an organic thin-film transistor (OTFT) driver circuit for the actuator of an organic fluid pump, which can be integrated in a portable-size fully-organic artificial lung. Compared to traditional pump designs, lightness, compactness and scalability are achieved by adopting a creative pumping mechanism with a completely organic-material-based system concept. The transportable fluid volume is verified to be flexibly adjustable, enabling on-demand controllability and scalability of the pump's fluid-flow rate. The simulations, based on an accurate surface-potential OTFT compact model, demonstrate that the necessary driving waveforms can be efficiently generated and adjusted to the actuator requirements. At the actuator-driving-circuit frequency of 0.98Hz, an all-organic fluid pump with 40cm length and 0.2cm height is able to achieve a flow rate of 0.847L/min, which satisfies the requirements for artificial-lung assist systems to a weakened normal lung.

  • D2-POR: Direct Repair and Dynamic Operations in Network Coding-Based Proof of Retrievability

    Kazumasa OMOTE  Phuong-Thao TRAN  

     
    PAPER-Cryptography and cryptographic protocols

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    816-829

    Proof of Retrievability (POR) is a protocol by which a client can distribute his/her data to cloud servers and can check if the data stored in the servers is available and intact. After that, network coding-based POR has been applied to improve network throughput. Although many network coding-based PORs have been proposed, most of them have not achieved the following practical features: direct repair and dynamic operations. In this paper, we propose the D2-POR scheme (Direct repair and Dynamic operations in network coding-based POR) to address these shortcomings. When a server is corrupted, the D2-POR can support the direct repair in which the data stored in the corrupted server can be repaired using the data directly provided by healthy servers. The client is thus free from the burden of data repair. Furthermore, the D2-POR allows the client to efficiently perform dynamic operations, i.e., modification, insertion and deletion.

  • Max-Min-Degree Neural Network for Centralized-Decentralized Collaborative Computing

    Yiqiang SHENG  Jinlin WANG  Chaopeng LI  Weining QI  

     
    PAPER

      Vol:
    E99-B No:4
      Page(s):
    841-848

    In this paper, we propose an undirected model of learning systems, named max-min-degree neural network, to realize centralized-decentralized collaborative computing. The basic idea of the proposal is a max-min-degree constraint which extends a k-degree constraint to improve the communication cost, where k is a user-defined degree of neurons. The max-min-degree constraint is defined such that the degree of each neuron lies between kmin and kmax. Accordingly, the Boltzmann machine is a special case of the proposal with kmin=kmax=n, where n is the full-connected degree of neurons. Evaluations show that the proposal is much better than a state-of-the-art model of deep learning systems with respect to the communication cost. The cost of the above improvement is slower convergent speed with respect to data size, but it does not matter in the case of big data processing.

  • The Existence of a Class of Mixed Orthogonal Arrays

    Shanqi PANG  Yajuan WANG  Guangzhou CHEN  Jiao DU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:4
      Page(s):
    863-868

    The orthogonal array is an important object in combinatorial design theory, and it is applied to many fields, such as computer science, coding theory and cryptography etc. This paper mainly studies the existence of the mixed orthogonal arrays of strength two with seven factors and presents some new constructions. Consequently, a few new mixed orthogonal arrays are obtained.

  • Discriminative Metric Learning on Extended Grassmann Manifold for Classification of Brain Signals

    Yoshikazu WASHIZAWA  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E99-A No:4
      Page(s):
    880-883

    Electroencephalography (EEG) and magnetoencephalography (MEG) measure the brain signal from spatially-distributed electrodes. In order to detect event-related synchronization and desynchronization (ERS/ERD), which are utilized for brain-computer/machine interfaces (BCI/BMI), spatial filtering techniques are often used. Common spatial potential (CSP) filtering and its extensions which are the spatial filtering methods have been widely used for BCIs. CSP transforms brain signals that have a spatial and temporal index into vectors via a covariance representation. However, the variance-covariance structure is essentially different from the vector space, and not all the information can be transformed into an element of the vector structure. Grassmannian embedding methods, therefore, have been proposed to utilize the variance-covariance structure of variational patterns. In this paper, we propose a metric learning method to classify the brain signal utilizing the covariance structure. We embed the brain signal in the extended Grassmann manifold, and classify it on the manifold using the proposed metric. Due to this embedding, the pattern structure is fully utilized for the classification. We conducted an experiment using an open benchmark dataset and found that the proposed method exhibited a better performance than CSP and its extensions.

  • A Meet-in-the-Middle Attack on Reduced-Round Kalyna-b/2b

    Riham ALTAWY  Ahmed ABDELKHALEK  Amr M. YOUSSEF  

     
    LETTER-Information Network

      Pubricized:
    2016/01/22
      Vol:
    E99-D No:4
      Page(s):
    1246-1250

    In this letter, we present a meet-in-the-middle attack on the 7-round reduced block cipher Kalyna-b/2b, which has been approved as the new encryption standard of Ukraine (DSTU 7624:2014) in 2015. According to its designers, the cipher provides strength to several cryptanalytic methods after the fifth and sixth rounds of the versions with block length of 128 and 256 bits, respectively. Our attack is based on the differential enumeration approach, where we carefully deploy a four-round distinguisher in the first four rounds to bypass the effect of the carry bits resulting from the prewhitening modular key addition. We also exploit the linear relation between consecutive odd and even indexed round keys, which enables us to attack seven rounds and recover all the round keys incrementally. The attack on Kalyna with 128-bit block has a data complexity of 289 chosen plaintexts, time complexity of 2230.2 and a memory complexity of 2202.64. The data, time and memory complexities of our attack on Kalyna with 256-bit block are 2233, 2502.2 and 2170, respectively.

  • Privacy Protection for Social Video via Background Estimation and CRF-Based Videographer's Intention Modeling

    Yuta NAKASHIMA  Noboru BABAGUCHI  Jianping FAN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    1221-1233

    The recent popularization of social network services (SNSs), such as YouTube, Dailymotion, and Facebook, enables people to easily publish their personal videos taken with mobile cameras. However, at the same time, such popularity has raised a new problem: video privacy. In such social videos, the privacy of people, i.e., their appearances, must be protected, but naively obscuring all people might spoil the video content. To address this problem, we focus on videographers' capture intentions. In a social video, some persons are usually essential for the video content. They are intentionally captured by the videographers, called intentionally captured persons (ICPs), and the others are accidentally framed-in (non-ICPs). Videos containing the appearances of the non-ICPs might violate their privacy. In this paper, we developed a system called BEPS, which adopts a novel conditional random field (CRF)-based method for ICP detection, as well as a novel approach to obscure non-ICPs and preserve ICPs using background estimation. BEPS reduces the burden of manually obscuring the appearances of the non-ICPs before uploading the video to SNSs. Compared with conventional systems, the following are the main advantages of BEPS: (i) it maintains the video content, and (ii) it is immune to the failure of person detection; false positives in person detection do not violate privacy. Our experimental results successfully validated these two advantages.

  • Distributed Compressed Video Sensing with Joint Optimization of Dictionary Learning and l1-Analysis Based Reconstruction

    Fang TIAN  Jie GUO  Bin SONG  Haixiao LIU  Hao QIN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/01/21
      Vol:
    E99-D No:4
      Page(s):
    1202-1211

    Distributed compressed video sensing (DCVS), combining advantages of compressed sensing and distributed video coding, is developed as a novel and powerful system to get an encoder with low complexity. Nevertheless, it is still unclear how to explore the method to achieve an effective video recovery through utilizing realistic signal characteristics as much as possible. Based on this, we present a novel spatiotemporal dictionary learning (DL) based reconstruction method for DCVS, where both the DL model and the l1-analysis based recovery with correlation constraints are included in the minimization problem to achieve the joint optimization of sparse representation and signal reconstruction. Besides, an alternating direction method with multipliers (ADMM) based numerical algorithm is outlined for solving the underlying optimization problem. Simulation results demonstrate that the proposed method outperforms other methods, with 0.03-4.14 dB increases in PSNR and a 0.13-15.31 dB gain for non-key frames.

  • Performance Analysis of Lunar Spacecraft Navigation Based on Inter-Satellite Link Annular Beam Antenna

    Lei CHEN  Ke ZHANG  Yangbo HUANG  Zhe LIU  Gang OU  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2016/01/29
      Vol:
    E99-B No:4
      Page(s):
    951-959

    The rapid development of a global navigation satellite system (GNSS) has raised the demand for spacecraft navigation, particularly for lunar spacecraft (LS). First, instead of the traditional approach of combining the united X-band system (UXB) with very-long-baseline interferometry (VLBI) by a terrestrial-based observing station in Chinese deep-space exploration, the spacecraft navigation based on inter-satellite link (ISL) is proposed because the spatial coverage of the GNSS downstream signals is too narrow to be used for LS navigation. Second, the feasibility of LS navigation by using ISL wide beam signals has been analyzed with the following receiving parameters: the geometrical dilution of precision (GDOP) and the carrier-to-noise ratio (C/N0) for satellites autonomously navigation of ISL and LS respectively; the weighting distance root-mean-square (wdrms) for the combination of both navigation modes. Third, to be different from all existing spacecraft ISL and GNSS navigation methods, an ISL annular beam transmitting antenna has been simulated to minimize the wdrms (1.138m) to obtain the optimal beam coverage: 16°-47° on elevation angle. Theoretical calculations and simulations have demonstrated that both ISL autonomous navigation and LS navigation can be satisfied at the same time. Furthermore, an onboard annular wide beam ISL antenna with optimized parameters has been designed to provide a larger channel capacity with a simpler structure than that of the existing GPS ISL spot beam antenna, a better anti-jamming performance than that of the former GPS ISL UHF-band wide band antenna, and a wider effectively operating area than the traditional terrestrial-based measurement. Lastly, the possibility and availability of applying an ISL receiver with an annular wide beam antenna on the Chinese Chang'E-5T (CE-5T) reentry experiment for autonomous navigation are analyzed and verified by simulating and comparing the ISL receiver with the practiced GNSS receiver.

  • Diamond Cellular Network —Optimal Combination of Small Power Basestations and CoMP Cellular Networks —

    Hidekazu SHIMODAIRA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Shinobu NANBA  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:4
      Page(s):
    917-927

    Coordinated Multi-point (CoMP) transmission has long been known for its ability to improve cell edge throughput. However, in a CoMP cellular network, fixed CoMP clustering results in cluster edges where system performance degrades due to non-coordinated clusters. To solve this problem, conventional studies proposed dynamic clustering schemes. However, such schemes require a complex backhaul topology and are infeasible with current network technologies. In this paper, small power base stations (BSs) are introduced instead of dynamic clustering to solve the cluster edge problem in CoMP cellular networks. This new cell topology is called the diamond cellular network since the resultant cell structure looks like a diamond pattern. In our novel cell topology, we derive the optimal locations of small power base stations and the optimal resource allocation between the CoMP base station and small power base stations to maximize the proportional fair utility function. By using the proposed architecture, in the case of perfect user scheduling, a more than 150% improvement in 5% outage throughput is achieved, and in the case of successive proportional fair user scheduling, nearly 100% improvement of 5% outage throughput is achieved compared with conventional single cell networks.

  • Using Reversed Sequences and Grapheme Generation Rules to Extend the Feasibility of a Phoneme Transition Network-Based Grapheme-to-Phoneme Conversion

    Seng KHEANG  Kouichi KATSURADA  Yurie IRIBE  Tsuneo NITTA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/01/06
      Vol:
    E99-D No:4
      Page(s):
    1182-1192

    The automatic transcription of out-of-vocabulary words into their corresponding phoneme strings has been widely adopted for speech synthesis and spoken-term detection systems. By combining various methods in order to meet the challenges of grapheme-to-phoneme (G2P) conversion, this paper proposes a phoneme transition network (PTN)-based architecture for G2P conversion. The proposed method first builds a confusion network using multiple phoneme-sequence hypotheses generated from several G2P methods. It then determines the best final-output phoneme from each block of phonemes in the generated network. Moreover, in order to extend the feasibility and improve the performance of the proposed PTN-based model, we introduce a novel use of right-to-left (reversed) grapheme-phoneme sequences along with grapheme-generation rules. Both techniques are helpful not only for minimizing the number of required methods or source models in the proposed architecture but also for increasing the number of phoneme-sequence hypotheses, without increasing the number of methods. Therefore, the techniques serve to minimize the risk from combining accurate and inaccurate methods that can readily decrease the performance of phoneme prediction. Evaluation results using various pronunciation dictionaries show that the proposed model, when trained using the reversed grapheme-phoneme sequences, often outperformed conventional left-to-right grapheme-phoneme sequences. In addition, the evaluation demonstrates that the proposed PTN-based method for G2P conversion is more accurate than all baseline approaches that were tested.

  • Elastic and Adaptive Resource Orchestration Architecture on 3-Tier Network Virtualization Model

    Masayoshi SHIMAMURA  Hiroaki YAMANAKA  Akira NAGATA  Katsuyoshi IIDA  Eiji KAWAI  Masato TSURU  

     
    PAPER-Information Network

      Pubricized:
    2016/01/18
      Vol:
    E99-D No:4
      Page(s):
    1127-1138

    Network virtualization environments (NVEs) are emerging to meet the increasing diversity of demands by Internet users where a virtual network (VN) can be constructed to accommodate each specific application service. In the future Internet, diverse service providers (SPs) will provide application services on their own VNs running across diverse infrastructure providers (InPs) that provide physical resources in an NVE. To realize both efficient resource utilization and good QoS of each individual service in such environments, SPs should perform adaptive control on network and computational resources in dynamic and competitive resource sharing, instead of explicit and sufficient reservation of physical resources for their VNs. On the other hand, two novel concepts, software-defined networking (SDN) and network function virtualization (NFV), have emerged to facilitate the efficient use of network and computational resources, flexible provisioning, network programmability, unified management, etc., which enable us to implement adaptive resource control. In this paper, therefore, we propose an architectural design of network orchestration for enabling SPs to maintain QoS of their applications aggressively by means of resource control on their VNs efficiently, by introducing virtual network provider (VNP) between InPs and SPs as 3-tier model, and by integrating SDN and NFV functionalities into NVE framework. We define new north-bound interfaces (NBIs) for resource requests, resource upgrades, resource programming, and alert notifications while using the standard OpenFlow interfaces for resource control on users' traffic flows. The feasibility of the proposed architecture is demonstrated through network experiments using a prototype implementation and a sample application service on nation-wide testbed networks, the JGN-X and RISE.

3781-3800hit(18690hit)