The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ada(1871hit)

401-420hit(1871hit)

  • Error Evaluation of an F0-Adaptive Spectral Envelope Estimator in Robustness against the Additive Noise and F0 Error

    Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/04/02
      Vol:
    E98-D No:7
      Page(s):
    1405-1408

    This paper describes an evaluation of a temporally stable spectral envelope estimator proposed in our past research. The past research demonstrated that the proposed algorithm can synthesize speech that is as natural as the input speech. This paper focuses on an objective comparison, in which the proposed algorithm is compared with two modern estimation algorithms in terms of estimation performance and temporal stability. The results show that the proposed algorithm is superior to the others in both aspects.

  • A 5-GHz Band WLAN SiGe HBT Power Amplifier IC with Novel Adaptive-Linearizing CMOS Bias Circuit

    Xin YANG  Tsuyoshi SUGIURA  Norihisa OTANI  Tadamasa MURAKAMI  Eiichiro OTOBE  Toshihiko YOSHIMASU  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    651-658

    This paper presents a novel CMOS bias topology serving as not only a bias circuit but also an adaptive linearizer for SiGe HBT power amplifier (PA) IC. The novel bias circuit can well keep the base-to-emitter voltage (Vbe) of RF amplifying HBT constant and adaptively increase the base current (Ib) with the increase of the input power. Therefore, the gain compression and phase distortion performance of the PA is improved. A three-stage 5-GHz band PA IC with the novel bias circuit for WLAN applications is designed and fabricated in IBM 0.35µm SiGe BiCMOS technology. Under 54Mbps OFDM signal at 5.4GHz, the PA IC exhibits a measured small-signal gain of 29dB, an EVM of 0.9% at 17dBm output power and a DC current consumption of 284mA.

  • A Robust Interference Covariance Matrix Reconstruction Algorithm against Arbitrary Interference Steering Vector Mismatch

    Xiao Lei YUAN  Lu GAN  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1553-1557

    We address a robust algorithm for the interference-plus-noise covariance matrix reconstruction (RA-INCMR) against random arbitrary steering vector mismatches (RASVMs) of the interferences, which lead to substantial degradation of the original INCMR beamformer performance. Firstly, using the worst-case performance optimization (WCPO) criteria, we model these RASVMs as uncertainty sets and then propose the RA-INCMR to obtain the robust INCM (RINCM) based on the Robust Capon Beamforming (RCB) algorithm. Finally, we substitute the RINCM back into the original WCPO beamformer problem for the sample covariance matrix to formulate the new RA-INCM-WCPO beamformer problem. Simulation results demonstrate that the performance of the proposed beamformer is much better than the original INCMR beamformer when there exist RASVMs, especially at low signal-to-noise ratio (SNR).

  • A New Adaptive Notch Filtering Algorithm Based on Normalized Lattice Structure with Improved Mean Update Term

    Shinichiro NAKAMURA  Shunsuke KOSHITA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1482-1493

    In this paper, we propose Affine Combination Lattice Algorithm (ACLA) as a new lattice-based adaptive notch filtering algorithm. The ACLA makes use of the affine combination of Regalia's Simplified Lattice Algorithm (SLA) and Lattice Gradient Algorithm (LGA). It is proved that the ACLA has faster convergence speed than the conventional lattice-based algorithms. We conduct this proof by means of theoretical analysis of the mean update term. Specifically, we show that the mean update term of the ACLA is always larger than that of the conventional algorithms. Simulation examples demonstrate the validity of this analytical result and the utility of the ACLA. In addition, we also derive the step-size bound for the ACLA. Furthermore, we show that this step-size bound is characterized by the gradient of the mean update term.

  • Accurate Coherent Change Detection Method Based on Pauli Decomposition for Fully Polarimetric SAR Imagery

    Ryo OYAMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:7
      Page(s):
    1390-1395

    Microwave imaging techniques, particularly for synthetic aperture radar (SAR), produce high-resolution terrain surface images regardless of the weather conditions. Focusing on a feature of complex SAR images, coherent change detection (CCD) approaches have been developed in recent decades that can detect invisible changes in the same regions by applying phase interferometry to pairs of complex SAR images. On the other hand, various techniques of polarimetric SAR (PolSAR) image analysis have been developed, since fully polarimetric data often include valuable information that cannot be obtained from single polarimetric observations. According to this background, various coherent change detection methods based on fully polarimetric data have been proposed. However, the detection accuracies of these methods often degrade in low signal-to-noise ratio (SNR) situations due to the lower signal levels of cross-polarized components compared with those of co-polarized ones. To overcome the problem mentioned above, this paper proposes a novel CCD method by introducing the Pauli decomposition and the weighting of component with their respective SNR. The experimental data obtained in anechoic chamber show that the proposed method significantly enhances the performance of the receiver operation characteristic (ROC) compared with that obtained by a conventional approach.

  • Throughput Maximization for Wireless Relay Systems with AMC and HARQ

    Wei-Shun LIAO  Po-Hung LIU  Hsuan-Jung SU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:7
      Page(s):
    1345-1356

    With the development of wireless technologies, wireless relay systems have become a popular topic. To design practical wireless relay systems, link adaptation is an important technique. Because there are both broadcast and multiple access channels in wireless relay systems, link adaptation is difficult to design and hence the optimal throughput is hard to achieve. In this study, a novel method is proposed to maximize the system throughput of wireless relay systems by utilizing the most popular link adaptation methods, adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ). The proposed method utilizes the characteristics and operations of AMC and HARQ to adaptively adjust the thresholds for selecting modulation and coding scheme (MCS) to be used. Thus the system can keep tracking the optimal values of the thresholds. Therefore, the system throughput can be maximized. We set up simulations for different relay environment settings, such as different relay HARQ protocols, placements, and multiplexing schemes, to verify the capability of the proposed method. The simulation results show that, compared to the existing method, the proposed method indeed improves system throughput under a variety of relay settings and can be easily applied to different system platforms.

  • Memoryless and Adaptive State Feedback Controller for a Chain of Integrators with an Unknown Delay in the Input

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1565-1568

    For systems with a delay in the input, the predictor method has been often used in state feedback controllers for system stabilization or regulation. In this letter, we show that for a chain of integrators with even an unknown input delay, a much simpler and memoryless controller is a good candidate for system regulation. With an adaptive gain-scaling factor, the proposed state feedback controller can deal with an unknown time-varying delay in the input. An example is given for illustration.

  • Effect Analysis of Coding Convention Violations on Readability of Post-Delivered Code

    Taek LEE  Jung-Been LEE  Hoh Peter IN  

     
    PAPER-Software Engineering

      Pubricized:
    2015/04/10
      Vol:
    E98-D No:7
      Page(s):
    1286-1296

    Adherence to coding conventions during the code production stage of software development is essential. Benefits include enabling programmers to quickly understand the context of shared code, communicate with one another in a consistent manner, and easily maintain the source code at low costs. In reality, however, programmers tend to doubt or ignore the degree to which the quality of their code is affected by adherence to these guidelines. This paper addresses research questions such as “Do violations of coding conventions affect the readability of the produced code?”, “What kinds of coding violations reduce code readability?”, and “How much do variable factors such as developer experience, project size, team size, and project maturity influence coding violations?” To respond to these research questions, we explored 210 open-source Java projects with 117 coding conventions from the Sun standard checklist. We believe our findings and the analysis approach used in the paper will encourage programmers and QA managers to develop their own customized and effective coding style guidelines.

  • Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing

    Kazuki MARUTA  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1050-1057

    This paper proposes a novel blind adaptive array scheme with subcarrier transmission power assignment (STPA) for spectrum superposing in cognitive radio networks. The Eigenvector Beamspace Adaptive Array (EBAA) is known to be one of the blind adaptive array algorithms that can suppress inter-system interference without any channel state information (CSI). However, EBAA has difficulty in suppressing interference signals whose Signal to Interference power Ratio (SIR) values at the receiver are around 0dB. With the proposed scheme, the ST intentionally provides a level difference between subcarriers. At the receiver side, the 1st eigenvector of EBAA is applied to the received signals of the subcarrier assigned higher power and the 2nd eigenvector is applied to those assigned lower power. In order to improve interference suppression performance, we incorporate Beamspace Constant Modulus Algorithm (BSCMA) into EBAA (E-BSCMA). Additionally, STPA is effective in reducing the interference experienced by the primary system. Computer simulation results show that the proposed scheme can suppress interference signals received with SIR values of around 0dB while improving operational SIR for the primary system. It can enhance the co-existing region of 2 systems that share a spectrum.

  • A Bias-Free Adaptive Beamformer with GSC-APA

    Yun-Ki HAN  Jae-Woo LEE  Han-Sol LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1295-1299

    We propose a novel bias-free adaptive beamformer employing an affine projection algorithm with the optimal regularization parameter. The generalized sidelobe canceller affine projection algorithm suffers from a bias of a weight vectors under the condition of no reference signals for output of an array in the beamforming application. First, we analyze the bias in the algorithm and prove that the bias can be eliminated through a large regularization parameter. However, this causes slow convergence at the initial state, so the regularization parameter should be controlled. Through the optimization of the regularization parameter, the proposed method achieves fast convergence without the bias at the steady-state. Experimental results show that the proposed beamformer not only removes the bias but also achieves both fast convergence and high steady-state output signal-to-interference-plus-noise ratio.

  • Performance Analysis and Optimum Resource Allocation in Mobile Multihop Relay System

    Taejoon KIM  Seong Gon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1078-1085

    This paper analyzes the performance of a mobile multihop relay (MMR) system which uses intermediate mobile relay stations (RSs) to increase service coverage area and capacity of a communication system. An analytical framework for an MMR system is introduced, and a scheme for allocating the optimum radio resources to an MMR system is presented. It is very challenging to develop an analytical framework for an MMR system because more than two wireless links should be considered in analyzing the performance of such a system. Here, the joint effect of a finite queue length and an adaptive modulation and coding (AMC) scheme in both a base station (BS) and an RS are considered. The traffic characteristics from BS to RS are analyzed, and a three-dimensional finite-state Markov chain (FSMC) is built for the RS which considers incoming traffic from the BS as well. The RS packet loss rate and the RS average throughput are also derived. Moreover, maximum throughput is achieved by optimizing the amount of radio resources to be allocated to the wireless link between a BS and an RS.

  • A Novel Processing Scheme of Dynamic Programming Based Track-Before-Detect in Passive Bistatic Radar

    Xin GUAN  Lihua ZHONG  Donghui HU  Chibiao DING  

     
    PAPER-Sensing

      Vol:
    E98-B No:5
      Page(s):
    962-973

    Weak target detection is a key problem in passive bistatic radar (PBR). Track-before-detect (TBD) is an effective solution which has drawn much attention recently. However, TBD has not been fully developed in PBR. In this paper, the transition function and the selection of parameters in dynamic programming are analyzed in PBR. Then a novel processing scheme of dynamic programming based TBD is proposed to reduce the computation complexity without severely decreasing the detection performance. Discussions including complexity, detection performance, threshold determination, selection of parameters and detection of multitarget, are presented in detail. The new method can provide fast implementation with only a slight performance penalty. In addition, good multitarget detection performance can be achieved by using this method. Simulations are carried out to present the performance of the proposed processing scheme.

  • Performance Analysis of an LMS Based Adaptive Feedback Canceller for On-Channel Repeaters

    Jihoon CHOI  Young-Ho JUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    908-916

    An on-channel repeater (OCR) performing simultaneous reception and transmission at the same frequency is beneficial to improve spectral efficiency and coverage. In an OCR, it is important to cancel the feedback interference caused by imperfect isolation between the transmit and receive antennas, and least mean square (LMS) based adaptive filters are commonly used for this purpose. In this paper, we analyze the performance of the LMS based adaptive feedback canceller in terms of its transient behavior and the steady-state mean square error (MSE). Through a theoretical analysis, we derive iterative equations to compute transient MSEs and provide a procedure to simply evaluate steady-state MSEs for the adaptive feedback canceller. Simulation results performed to verify the theoretical MSEs show good agreement between the proposed theoretical analysis and the empirical results.

  • Numerical Implementation of Generalized Monopulse Estimation with Measured Subarray Patterns

    EunHee KIM  Dong-Gyu KIM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:4
      Page(s):
    340-348

    Monopulse is a classical technique for radar angle estimation and still adopted for fast angle estimation in phased array antenna. The classical formula can be applied to a 2-dimentional phased array antenna if two conditions---the unbiasedness and the independence of the azimuth and the elevation estimate---are satisfied. However, if the sum and difference beams are adapted to suppress the interference under jamming condition, they can be severely distorted. Thus the difference beams become highly correlated and violate the conditions. In this paper, we show the numerical implementation of the generalized monopulse estimation using the distorted and correlated beams, especially for a subarray configured antenna. Because we use the data from the measured subarray patterns rather than the mathematical model, this numerical method can be easily implemented for the complex array configuration and gives good performance for the uncertainty of the real system.

  • Method Verb Recommendation Using Association Rule Mining in a Set of Existing Projects

    Yuki KASHIWABARA  Takashi ISHIO  Hideaki HATA  Katsuro INOUE  

     
    PAPER-Software Engineering

      Pubricized:
    2014/12/16
      Vol:
    E98-D No:3
      Page(s):
    627-636

    It is well-known that program readability is important for maintenance tasks. Method names are important identifiers for program readability because they are used for understanding the behavior of methods without reading a part of the program. Although developers can create a method name by arbitrarily choosing a verb and objects, the names are expected to represent the behavior consistently. However, it is not easy for developers to choose verbs and objects consistently since each developer may have a different notion of a suitable lexicon for method names. In this paper, we propose a technique to recommend candidate verbs for a method name so that developers can use various verbs consistently. We recommend candidate verbs likely to be used as a part of a method name, using association rules extracted from existing methods. To evaluate our technique, we have extracted rules from 445 open source projects written in Java and confirmed the accuracy of our approach by applying the extracted rules to several open source applications. As a result, we found that 84.9% of the considered methods in four projects are recommended the existing verb. Moreover, we found that 73.2% of the actual renamed methods in six projects are recommended the correct verb.

  • Two-Step Pairing Algorithm for Target Range and Velocity Detection in FMCW Automotive Radar

    Eugin HYUN  Woojin OH  Jong-Hun LEE  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    801-810

    In automotive frequency modulated continuous wave (FMCW) radar based on multiple ramps with different slope, an effective pairing algorithm is required to simultaneously detect the target range and velocity. That is, as finding beat-frequencies intersecting at a single point of the range-Doppler map, we extract the range and velocity of a target. Unlike the ideal case, however, in a real radar system, even though multiple beat frequencies are originated from the same target, these beat frequencies have many different intersection values, resulting in mismatch pairing during the pairing step. Moreover, this problem also reduces the detection accuracy and the radar detection performance. In this study, we found that mismatch pairing is caused by the round-off errors of the range-beat frequency and Doppler frequency, as well as their various combinations in the discrete frequency domain. We also investigated the effect of mismatch pairing on detection performance, and proposed a new approach to minimize this problem. First, we propose integer and half-integer frequency position-based pairing method during extraction of the range and Doppler frequencies in each ramp to increase detection accuracy. Second, we propose a window-based pairing method to identify the same target from range-Doppler frequencies extracted in the first step. We also find the appropriate window size to overcome pairing mismatch. Finally, we propose the method to obtain a higher accuracy of range and velocity by weighting the values determined in one window. To verify the detection performance of the proposed method by comparison with the typical method, simulations were conducted. Then, in a real field test using the developed radar prototype, the detection probability of the proposed algorithm showed more than 60% improvement in comparison with the conventional method.

  • Error Reduction by Reflected Signals in Automotive Radar Network Systems

    Hiroyuki HATANO  Masahiro FUJII  Atsushi ITO  Yu WATANABE  Yusuke YOSHIDA  Takayoshi NAKAI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    597-605

    We focus on forward-looking radar network systems for automotive usages. By using multiple radars, the radar network systems will achieve reliable detection and wide observation area. The forward-looking systems by cameras are famous. In order to realize more reliable safety, the cameras had better be used with other sensing devices such as the radar network. In the radar network, processing of the data, which is derived from the multiple receivers, is important because the processing decides the estimation performance. In this paper, we will introduce our estimation algorithm which focuses on target existence probability and virtual receivers. The performance will be evaluated by simulated targets which are both single point model and 3D target model.

  • Generic Fully Simulatable Adaptive Oblivious Transfer

    Kaoru KUROSAWA  Ryo NOJIMA  Le Trieu PHONG  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    232-245

    We aim at constructing adaptive oblivious transfer protocols, enjoying fully simulatable security, from various well-known assumptions such as DDH, d-Linear, QR, and DCR. To this end, we present two generic constructions of adaptive OT, one of which utilizes verifiable shuffles together with threshold decryption schemes, while the other uses permutation networks together with what we call loosely-homomorphic key encapsulation schemes. The constructions follow a novel designing approach called “blind permutation”, which completely differs from existing ones. We then show that specific choices of the building blocks lead to concrete adaptive OT protocols with fully simulatable security in the standard model under the targeted assumptions. Our generic methods can be extended to build universally composable (UC) secure OT protocols, with a loss in efficiency.

  • A Monolithic Sub-sampling PLL based 6–18 GHz Frequency Synthesizer for C, X, Ku Band Communication

    Hanchao ZHOU  Ning ZHU  Wei LI  Zibo ZHOU  Ning LI  Junyan REN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:1
      Page(s):
    16-27

    A monolithic frequency synthesizer with wide tuning range, low phase noise and spurs was realized in 0.13,$mu$m CMOS technology. It consists of an analog PLL, a harmonic-rejection mixer and injection-locked frequency doublers to cover the whole 6--18,GHz frequency range. To achieve a low phase noise performance, a sub-sampling PLL with non-dividers was employed. The synthesizer can achieve phase noise $-$113.7,dBc/Hz@100,kHz in the best case and the reference spur is below $-$60,dBc. The core of the synthesizer consumes about 110,mA*1.2,V.

  • Novel Vehicle Information Acquisition Method Using 2D Reflector Code for Automotive Infrared Laser Radar

    Tomotaka WADA  Yusuke SHIKIJI  Keita WATARI  Hiromi OKADA  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    294-303

    In recent years, there are many collision accidents between vehicles due to human errors. As one of countermeasures against the collision accidents, automotive radar systems have been supporting vehicle drivers. By the automotive radar mounted on the vehicle, it is possible to recognize the situation around the vehicle. The ranging with automotive infrared laser radar is very accurate, and able to understand the object existence in the observation around the vehicle. However, in order to grasp the situation around the vehicle, it is necessary to be aware of the attribute of the detected object. The information obtained by the automotive radar vehicle is only the direction and the distance of the object. Thus, the recognition of the attribute of the detected object is very difficult. In this paper, we propose a novel vehicle information acquisition method by using 2D reflector code. Through experiments, we show that the proposed method is able to detect 2D reflector code and is effective for vehicle information acquisition.

401-420hit(1871hit)