The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

20461-20480hit(20498hit)

  • Translucent Multiuser Interface for Realtime Collaboration

    Hiroshi ISHII  

     
    INVITED PAPER

      Vol:
    E75-A No:2
      Page(s):
    122-131

    The new notion of "multiuser interface", an interface for groups working together in a shared workspace, originated from the expansion of CSCW research and the spread of the groupware concept. This paper introduces a new multiuser interface design approach based on the translucent video overlay technique. This approach was realized in the multimedia desktop conference system Team WorkStation. Team WorkStation demonstrates that this translucent video overlay technique can achieve two different goals: (1) fused overlay for realizing the open shared workspace, and (2) selective overlay for effectively using limited screen space. This paper first describes the concept of open shared workspace and its implementation based on the fused overlay technique. The shared work window of Team-WorkStation is created by overlaying translucent individual workspace images. Each video layer is originally physically separated. However, because of the spatial relationships among marks on each layer, the set of overlaid layers provides users with sufficient semantics to fuse them into one image. The usefulness of this cognitive fusion was demonstrated through actual usage in design sessions. Second, the problem of screen space limitation is described. To solve this problem, the idea of ClearFace based on selective overlay is introduced. The ClearFace idea is to lay translucent live face video windows over a shared work window. Through the informal observations of experimental use in design sessions, little difficulty was experienced in switching the focus of attention between the face images and the drawing objects. The theory of selective looking accounts for this flexible perception mechanism. Although users can see drawn objects behind a face without difficulty, we found that users hesitate to draw figures or write text over face images. Because of this behavior, we devised the "movable" face window strategy.

  • Experimentally Verified Majority and Minority Mobilities in Heavily Doped GaAs for Device Simulations

    Herbert S. BENNETT  Jeremiah R. LOWNEY  Masaaki TOMIZAWA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    161-171

    Low-field mobilities and velocity versus electric field relations are among the key input parameters for drift-diffusion simulations of field-effect and bipolar transistors. For example, most device simulations that treat scattering from ionized impurities contain mobilities or velocity versus field relations based on the Born approximation (BA). The BA is insensitive to the sign of the charged impurity and is especially poor for ionized impurity scattering because of the relatively strong scattering of long-wavelength carriers, which have low energies, and therefore violate the validity condition for the BA. Such carriers occur at high symmetry points in the Brillouin zone and are critical for device behavior. There has been a tendency in the past to assume that majority and minority mobilities are equal. This assumption can lead to incorrect interpretations of device data and thereby misleading design strategies based on such simulations. We have calculated the majority electron and minority hole mobilities in GaAs at 300 K for donor densities between 51016 and 11019 cm-3 and the majority hole and minority electron mobilities for acceptor densities between 51016 and 11020 cm-3. We have included all the important scattering mechanisms for GaAs: acoustic phonon, polar optic phonon, nonpolar optic phonon (holes only), piezoelectric, ionized impurity, carrier-carrier, and plasmon scattering. The ionized impurity and carrier-carrier scattering processes have been calculated with a quantum mechanical phase-shift analysis to obtain more accurate matrix elements for these two scattering mechanisms. We compare the total scattering rate for majority electrons due to ionized impurities based on exact phase shifts and on the BA used by Brooks-Herring. We also present additional data that show the differences between the exact phase-shift analyses and the BA for majority electron scattering rates as functions of carrier energy and scattering angle. These results show that the calculated low-field mobilities are in good agreement with experiment, but they predict that at high dopant densities minority mobilities should increase with increasing dopant density for a short range of densities. This effect occurs because of the reduction of plasmon scattering and the removal of carriers from carrier-carrier scattering because of the Pauli exclusion principle. Some recent experiments support this finding. These results are important for device modeling because of the need to have reliable values for the minority mobilities and velocity-field relations.

  • Process Simulation for Laser Recrystallization

    Bo HU  Albert SEIDL  Gertraud NEUMAYER  Reinhold BUCHNER  Karl HABERGER  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    138-144

    Modeling and numerical simulation of crystal growth of Si film and heat transport in 3D structure were made for optimization of physical and geometrical parameters used during laser recrystallization. Based on simulations a new concept called micro-absorber was introduced for obtaining defect-free Si films.

  • Human Interfaces in Telecommunications and Computers

    Takaya ENDO  

     
    INVITED PAPER

      Vol:
    E75-B No:1
      Page(s):
    20-25

    This paper discusses new trends and directions in human interface (HI) technologies, and the effects of HI technologies on human life or on social activities. This paper postulates that the HI subsumes man-machine interface, human-computer interaction, human-human interaction, human-organizational interface, human-environmental interface, human-social interface, etc. A new communication model, called Human Interface Communication Model (HICOM), and a new human dialogue model, called Human Interface Dialogue model (HIDIM), are derived by reexamining trends and directions on HI technologies from the viewpoint of functional meanings of interfaces, and from the viewpoint of a socially distributed cognition mechanism.

  • Interactive Bi-proof Systems and Undeniable Signature Schemes

    Atsushi FUJIOKA  Tatsuaki OKAMOTO  Kazuo OHTA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    102-109

    This paper proposes a new construction of the minimum knowledge undeniable signature scheme which solves a problem inherent in Chaum's scheme. We formulate a new proof system, the minimum knowledge interactive bi-proof system, and a pair of languages, the common witness problem, based on the random self-reducible problem. We show that any common witness problem has the minimum knowledge interactive bi-proof system. A practical construction for undeniable signature schemes is proposed based on such a proof system. These schemes provide signature confirmation and disavowal with the same protocol (or at the same time).

  • Testing the Two-Layer Routability in a Circular Channel

    Noriya KOBAYASHI  Masahiro ABE  Toshinobu KASHIWABARA  Sumio MASUDA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:1
      Page(s):
    83-91

    Suppose that there are terminals on two concentric circles Cin and Cout, with Cin inside of Cout. A set of two-terminal nets is given and the routing area is the annular region between the two circles. In this paper, we present an O(n2) time algorithm for testing whether the given net set is two-layer routable, where n is the number of nets. Applying this algorithm repeatedly, we can find, in O(n3) time, a maximal subset of nets which is two-layer routable.

  • A Study of Line Spectrum Pair Frequency Representation for Speech Recognition

    Fikret S. GURGEN  Shigeki SAGAYAMA  Sadaoki FURUI  

     
    PAPER-Speech

      Vol:
    E75-A No:1
      Page(s):
    98-102

    This paper investigates the performance of the line spectrum pair (LSP) frequency parameter representation for speech recognition. Transitional parameters of LSP frequencies are defined using first-order regression coefficients. The transitional and the instantaneous frequency parameters are linearly combined to generate a single feature vector used for recognition. The performance of the single vector is compared with that of the cepstral coefficients (CC) representation using a minimumdistance classifier in speaker-independent isolated word recognition experiments. In the speech recognition experiments, the transitional and the instantaneous coefficients are also combined in the distance domain. Also, inverse variance weighted Euclidean measures are defined using LSP frequencies to achieve Mel-scale-like warping and the new warped-frequencies are used in recognition experiments. The performance of the single feature vector defined with transitional and instantaneous LSP frequencies is found to be the best among the measures used in the experiments.

  • Coherent Optical Polarization-Shift-Keying (POLSK) Homodyne System Using Phase-Diversity Receivers

    Ichiro SETO  Tomoaki OHTSUKI  Hiroyuki YASHIMA  Iwao SASASE  Shinsaku MORI  

     
    PAPER

      Vol:
    E75-A No:1
      Page(s):
    52-59

    We propose Polarization-Shift-Keying (POLSK) homodyne system using phase-diversity receivers and theoretically analyze its bit-error-rate (BER) performance. Since the proposed system uses polarization modulation and homodyne detection, it can cancel the phase noise and is attractive at a high bit-rate transmission. It is found that the receiver sensitivity of the proposed POLSK homodyne system is the same as that of POLSK heterodyne system and is much better than that of DPSK phase-diversity homodyne systems at high signal-to-noise ratio (SNR). We also cosider theoretically the effect of the fluctuation of state of polarization (SOP) on the BER performance of POLSK homodyne system.

  • Coherent Optical Polarization-Shift-Keying (POLSK) Homodyne System Using Phase-Diversity Receivers

    Ichiro SETO  Tomoaki OHTSUKI  Hiroyuki YASHIMA  Iwao SASASE  Shinsaku MORI  

     
    PAPER

      Vol:
    E75-C No:1
      Page(s):
    50-57

    We propose Polarization-Shift-Keying (POLSK) homodyne system using phase-diversity receivers and theoretically analyze its bit-error-rate (BER) performance. Since the proposed system uses polarization modulation and homodyne detection, it can cancel the phase noise and is attractive at a high bit-rate transmission. It is found that the receiver sensitivity of the proposed POLSK homodyne system is the same as that of POLSK heterodyne system and is much better than that of DPSK phase-diversity homodyne systems at high signal-to-noise ratio (SNR). We also cosider theoreically the effect of the fluctuation of state of polarization (SOP) on the BER performance of POLSK homodyne system.

  • Parallel Rate-Variable Punctured Convolutional Coded PPM in Photon Communication

    Tomoaki OHTSUKI  Hiroyuki YASHIMA  Iwao SASASE  Shinsaku MORI  

     
    PAPER

      Vol:
    E75-C No:1
      Page(s):
    44-49

    We propose parallel rate-variable punctured convolutional coded PPM in photon communication to achieve high energy information efficiency Ie for desired bit error rate (BER) and transmission bandwidth. We theoretically show the BER performance, bandwidth expansion factor β and necessary Ie to achieve BER10-6 of the proposed systems for some combinations of code rates. It is found that the proposed system can achieve high Ie for desired BER and β by selecting a suitable combination of code rates depending on the channel conditions. Moreover, it is showm that the proposed system has better BER performance than RS-coded PPM in the range of small β.

  • Optical Stimulated Amplification and Absorption in Erbium-Doped Fiber

    Guoli YIN  Xianglin YANG  Mingde ZHANG  

     
    PAPER-Opto-Electronics

      Vol:
    E75-C No:1
      Page(s):
    90-92

    Based on the semiclassical theory, we deduce the expressions of stimulated absorption, stimulated amplification and threshold by using density matrix equation in the Er3+-doped fibers. Meaningful results have been given and some phenomena occuring in experiments are explained theoretically.

  • Distributed Leader Election on Chordal Ring Networks

    Koji NAKANO  Toshimitsu MASUZAWA  Nobuki TOKURA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    58-63

    A chordal ring network is a processor network on which n processors are arranged to a ring with additional chords. We study a distributed leader election algorithm on chordal ring networks and present trade-offs between the message complexity and the number of chords at each processor and between the message complexity and the length of chords as follows:For every d(1dlog* n1) there exists a chordal ring network with d chords at each processor on which the message complexity for leader election is O(n(log(d1)nlog* n)).For every d(1dlog* n1) there exists a chordal ring network with log(d1)nd1 chords at each processor on which the message complexity for leader election is O(dn).For every m(2mn/2) there exists a chordal ring network whose chords have at most length m such that the message complexity for leader election is O((n/m)log n).

  • Parallel Rate-Variable Punctured Convolutional Coded PPM in Photon Communication

    Tomoaki OHTSUKI  Hiroyuki YASHIMA  Iwao SASASE  Shinsaku MORI  

     
    PAPER

      Vol:
    E75-A No:1
      Page(s):
    46-51

    We propose parallel rate-variable punctured convolutional coded PPM in photon communication to achieve high energy information efficiency Ie for desired bit error rate (BER) and transmission bandwidth. We theoretically show the BER performance, bandwidth expansion factor β and necessary Ie to achieve BER=10-6 of the proposed systems for some combinations of code rates. It is found that the proposed system can achieve high Ie for desired BER and β by selecting a suitable combination of code rates depending on the channel conditions. Moreover, it is shown that the proposed system has better BER performance than RS-coded PPM in the range of small β.

  • Vertical to Surface Transmission Electro-Photonic Device (VSTEP) and Its Application to Optical Interconnection and Information Processing

    Kenichi KASAHARA  Takahiro NUMAI  Hideo KOSAKA  Ichiro OGURA  Kaori KURIHARA  Mitsunori SUGIMOTO  

     
    PAPER

      Vol:
    E75-A No:1
      Page(s):
    72-82

    The VSTEP concept and its practical application in the form of an LED-type pnpn-VSTEP demonstrating low power consumption through electro-photonic operational modes are both shown. Further, with focus primarily on the new laser-mode VSTEP with high-intensity light output and narrow optical beam divergence, the design features such as threshold gain and optical absorptivity, device fabrication, and characteristics are explained. The possibility of ultimate performance based mainly on electrical to optical power conversion efficiency, important from the application viewpoint of optical interconnection, are also discussed. Also, as two examples of functional optical interconnection achieved by VSTEP, serial-to-parallel data conversion and optical self-routing switches are shown. Finally, future opto-electronic technologies to be developed for two-dimensionally integrable surface-type optical semiconductor devices, including the VSTEP, are discussed.

  • Optical Solitons for Signal Processing

    Stephen R. FRIBERG  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    3-9

    We consider applications of optical solitons to signal processing. Soliton switching devices promise ultrafast operation and compatibility with communications systems using optical pulses. Quantum soliton effects include broadband squeezing and quantum nondemolition measurements, and can reduce noise and increase sensitivities of optical measurements. We report the demonstration of two-color soliton switching and describe progress towards implementation of quantum nondemolition measurement of photon number using soliton collisions.

  • An RNC Algorithm for Finding a Largest Common Subtree of Two Trees

    Tatsuya AKUTSU  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    95-101

    It is known that the problem of finding a largest common subgraph is NP-hard for general graphs even if the number of input graphs is two. It is also known that the problem can be solved in polynomial time if the input is restricted to two trees. In this paper, a randomized parallel (an RNC) algorithm for finding a largest common subtree of two trees is presented. The dynamic tree contraction technique and the RNC minimum weight perfect matching algorithm are used to obtain the RNC algorithm. Moreover, an efficient NC algorithm is presented in the case where input trees are of bounded vertex degree. It works in O(log(n1)log(n2)) time using O(n1n2) processors on a CREW PRAM, where n1 and n2 denote the numbers of vertices of input trees. It is also proved that the problem is NP-hard if the number of input trees is more than two. The three dimensional matching problem, a well known NP-complete problem, is reduced to the problem of finding a largest common subtree of three trees.

  • Leaf Reduction Theorem on Time- and Leaf-Bounded Alternating Turing Machines

    Hiroaki YAMAMOTO  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    133-140

    There have been several studies related to a reduction of the amount of computational resources used by Turing machines. As consequences, Linear speed-up theorem", tape compression theorem" and reversal reduction theorem" have been obtained. In this paper, we discuss a leaf reduction theorem on alternating Turing machines. Recently, the result that one can reduce the number of leaves by a constant factor without increasing the space complexity was shown for space- and leaf-bounded alternating Turing machines. We show that for time- and leaf-bounded alternating Turing machines, the number of leaves can be reduced by a constant factor without increasing time used by the machine. Therefore, our result says that a constant factor on the leaf complexity does not affect the power of time- and leaf-bounded alternating Turing machines.

  • On Depth-Bounded Planar Circuits

    Masao IKEKAWA  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    110-115

    We study the depth of planar Boolean circuits. We show that planar Boolean circuits of depth D(n) are simulated by on-line Turing machines in space O(D(n)). From this relationship, it is shown that any planar circuit for computing integer multiplication requires linear depth. It is also shown that a planar analogue to the NC-hierarchy is properly separated.

  • Parallel Algorithms for the Maximal Tree Cover Problems

    Zhi-Zhong CHEN  Takumi KASAI  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    30-34

    A maximal l-diameter tree cover of a graph G(V,E) is a spanning subgraph C(V,EC) of G such that each connected component of C is a tree, C contains no path with more than l edges, and adding any edge in EEC to C yields either a path of length l1 or a cycle. For every function f from positive integers to positive integers, the maximal f-diameter tree cover prolem (MDTC(f) problem for short) is to find a maximal f(n)-diameter tree cover of G, given an n-node graph G. In this paper, we give two parallel algorithms for the MDTC(f) problem. The first algorithm can be implemented in time O(TMSP(n,f(n))log2n) using polynomial number of processors on an EREW PRAM, where TMSP(n,f(n) is the time needed to find a maximal set of vertex disjoint paths of length f(n) in a given n-node graph using polynomial number of processors on an EREW PRAM. We then show that if suitable restrictions are imposed on the input graph and/or on the magnitude of f, then TMSP(n,f(n))O(logkn) for some constant k and thus, for such cases, we obtain an NC algorithm for the MDTC(f) problem. The second algorithm runs in time O(n log2n/{f(n)1}) using polynomial number of processors on an EREW PRAM. Thus if f(n)Ω(n/logkn) for some kO, we obtain an NC algorithm for the MDTC(f) problem.

  • The Universal Recognition Problems for Multiple Context-Free Grammars and for Linear Context-Free Rewriting Systems

    Yuichi KAJI  Ryuichi NAKANISI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER

      Vol:
    E75-D No:1
      Page(s):
    78-88

    Multiple context-free grammars (mcfg's) are a subclass of generalized context-free grammars introduced by Pollard in order to describe the syntax of natural languages. First, this paper shows that the universal recognition problem for mcfg's is EXP-POLY time-complete, where the universal recognition problem is the one to decide whether G generates w for a given grammar G and string w. Next, it is shown that the problem for linear context-free rewriting systems introduced by Vijay-Shanker et al., which is a proper subclass of mcfg's, is PSPACE-complete.

20461-20480hit(20498hit)