The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

20421-20440hit(20498hit)

  • Distributed Signal Transmission System Using Discrete Fourier Transform for High Noise Immunity

    Hyunkoo KANG  Yoon UH  Tasuku TAKAGI  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    188-192

    We propose a new distributed signal (analog or digital) transmission system which has the immunity against the noisy channel. An information signal in transmitter is distributed by distributor and the distributed signal is transmitted. Received signal is reconstructed by the inverse distributor in receiver. In this system, an impulsive interference noise which disturbs the transmission signal in the channel passes decoder only, and this interference noise is distributed by the inverse distributor while the transmitted signal is reconstructed. Some appended signals make it possible to estimate the noise components which inversely distributed with the Fourier transformation as the distributor. Basing upon this principle, the transmission system will have an ability to suppress the impulsive interference, and the channel will have high noise immunity. The construction of receiver which can eliminate the impulsive noise is derived.

  • Anechoic Chambers for EMI Test

    Yasutaka SHIMIZU  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    101-106

    Anechoic chambers have been effectively used for microwave propagation, electromagnetic interference (EMI) and immunity testing. The electromagnetic compatibility (EMC) problem has recently become serious and many of these chambers have been constructed. The results of a questionnaire survey sent to anechoic chamber manufacturers are described that a total of 450 anechoic chambers have been constructed in Japan since 1964. Twenty years ago the purpose of the chambers was microwave propagation research, but more than 50 each year have recently being built for EMC/EMI and immunity testing. Their size has gradually been reduced by the use of absorbing materials such as ferrite with dielectric materials. The lowest frequency of most chambers is 30MHz for the 3 m method of site attenuation.

  • An Application of Dynamic Channel Assignment to a Part of a Service Area of a Cellular Mobile Communication System

    Keisuke NAKANO  Masaharu YOKONO  Masakazu SENGOKU  Yoshio YAMAGUCHI  Shoji SHINODA  Seiichi MOTOOKA  Takeo ABE  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    369-379

    In general, dynamic channel assignment has a better performance than fixed channel assignment in a cellular mobile communication system. However, it is complex to control the system and a lot of equipments are required in each cell when dynamic channel assignment is applied to a large service area. Therefore, it is effective to limit the size of the service area in order to correct the defects of dynamic channel assignment. So, we propose an application of dynamic channel assignment to a part of a service area when fixed channel assignment is applied to the remaining part of the area. In the system, the efficiency of channel usage in some cells sometimes becomes terribly low. The system has such a problem to be improved. We show that the rearrangement of the channel allocation is effective on the problem.

  • A Layout System for Mixed A/D Standard Cell LSI's

    Ikuo HARADA  Hitoshi KITAZAWA  Takao KANEKO  

     
    PAPER

      Vol:
    E75-C No:3
      Page(s):
    322-332

    A layout system for mixed analog/digital standard cell LSI's is described. The system includes interactive floorplan and placement features and automatic global and channel router. In mixed analog/digital circuits, crosstalk noise causes chip performance degradation. Thus, the proposed global routing algorithm routes analog nets in areas that are free of digital nets as much as possible. The number of line crossovers, especially for analog nets, is minimized by both global and detailed routers, because these crossovers are the dominant factors in the crosstalk noise. Double width lines can be used to avoid unexpected voltage drops caused by parasitic resistances. A postprocess automatically puts up shield lines for very noise sensitive wirings to improve the S/N ratio. Experimental results show that the proposed algorithms are effective in reducing the number of crossovers and redundant vias.

  • Bifurcation Phenomena of a Distributed Parameter System with a Nonlinear Element Having Negative Resistance

    Hideo NAKANO  Hideaki OKAZAKI  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    339-346

    Dynamic behavior of a distributed parameter system described by the one-dimensional wave equation with a nonlinear boundary condition is examined in detail using a graphical method proposed by Witt on a digital computer. The bifurcation diagram, homoclinic orbit and one-dimensional map are obtained and examined. Results using an analog simulator are introduced and compared with that of the graphical method. The discrepancy between these results is considered, and from the comparison among the bifurcation diagrams obtained by the graphical method, it is denoted that the energy dissipation in the system considerably restrains the chaotic state in the bifurcation process.

  • Bicriteria Network Optimization Problems

    Naoki KATOH  

     
    INVITED PAPER

      Vol:
    E75-A No:3
      Page(s):
    321-329

    This paper presents a survey on bicriteria network optimization problems. When there are two conflicting criteria that evaluate the solution, the bicriteria optimization is to find a solution for which these criteria are both acceptably satisfied. Standard approaches to these problems are to combine these two criteria into an aggregated single criterion. Among such problems, this paper first deals with the case in which the aggregated objective function, denoted h(f1(x), f2(x)), is convex in original two objectives f1(x) and f2(x), and, as its special case, it reviews a strongly polynomial algorithm for the bicriteria minimum-cost circulation problem. It then discusses the case in which h is concave and demonstrates that a parametric approach is effective for this case. Several interesting applications in network optimization that belong to this class are also introduced. Finally we deal with the minimum range problems which seek to find a solution such that weights of the components used in the solution are most uniform. We shall present efficient algorithms for solving these problems arised in network optimization.

  • A Study of Aspect Calculus

    Kazuo HASHIMOTO  Tohru ASAMI  Seiichi YAMAMOTO  

     
    PAPER-Foundations of Artificial Intelligence and Knowledge Processing

      Vol:
    E75-A No:3
      Page(s):
    436-450

    Since Vendler classified aspect into four categories, state, achievement, activity, and accomplishment, much effort has been made to define the notion of aspect logically. It is commonly agreed that aspect represents the general temporal characteristics of events and states. However, there still remains a considerable amount of disagreement about its formal treatment. One of the major problems is that the aspect of a sentence shifts by certain types of sentence construction. For instance, adding time adverbials to a sentence modifies the original aspect, taking the progressive form of the verb changes the aspect, and so on. These phenomena are known as the aspect shifts. The other is the problem known as the imperfective paradox. The imperfective paradox is a problem of the truth definition of the progressives. The truth condition of the progressive form of the sentence is defined at an internal subinterval of the temporal range of the corresponding non-progressive sentence. If the truth condition of the progressive form of the sentence is defined using the truth condition of the non-progressive form of the sentence, there are logical contradictions of truth definition in a sentence such as "Max was building a house, but he never built it". These problems cause much confusion (1) in the truth definition of aspects, (2) in the definition of aspect operations, such as initiative, terminative, progressive, perfective, etc., and also (3) in the definition of adding time adverbials. This paper reviews the semantic problems with respect to aspect, and presents a consistent mechanism of aspect interpretation in order to settle all these semantic puzzles at once. For the sake of logical clarity, we construct a formal language, Lt, where every meaningful formula is a pair of a meaningful sentence and its aspect. The syntax of Lt describes the phenomenology of aspect shifts. The semantics of Lt defines temporal interpretation for all the meaningful sentences of Lt, with assuming the temporal interpretations of three inherent aspects, state, achievement, and activity. The proposed aspect interpretation gives a reasonable account for aspect shifts, and solves the imperfective paradox by asssuming the time structure to be backwards linear.

  • Two-Dimensional Quadrilateral Recursive Digital Filters with Parallel Structure--Synthesis and Parallel Processing--

    Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  Mineo KANEKO  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    352-361

    This paper proposes a designing algorithm for quadrilateral recursive filters which consist of four quarter-plane filters in the four quadrants. This can realize a perfect zero-phase filtering which is essential for image processing. Furthermore, several parallel processing algorithms capable of performing under very high parallel efficiency are developed on line-connected and mesh-connected processor arrays. By these proposals, the advantage of two-dimensional non-causal zero-phase recursive digital filters is made clear.

  • Linear Time Fault Simulation Algorithm Using a Content Addressable Memory

    Nagisa ISHIURA  Shuzo YAJIMA  

     
    INVITED PAPER

      Vol:
    E75-A No:3
      Page(s):
    314-320

    This paper presents a new fast fault simulation algorithm using a content addressable memory, which deals with zero-delay fault simulation of gate-level synchronous sequential circuits. The computation time of fault simulation for a single vector under the single stuck-at fault model is O(n2) for all the existing fault simulation algorithms on a sequential computers. The new algorithm attempts to reduce the computation time by processing many faults at a time by utilizing a property that a content addressable memory can be regarded as an SIMD type parallel computation machine. According to theoretical estimation, the speed performance of a simulator based on the proposed algorithm is equivalent to a fast fault simulator implemented on a vector supercomputer for a circuit of about 2400 gates.

  • A Linear-Time Algorithm for Computing All 3-Edge-Connected Components of a Multigraph

    Satoshi TAOKA  Toshimasa WATANABE  Kenji ONAGA  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    410-424

    The subject of the paper is to propose a simple O(|V|+|E|) algorithm for finding all 3-edge-components of a given undirected multigraph G=(V, E). An 3-edge-connected component of G is defined as a maximal set of vertices such that G has at least three edge-disjoint paths between every pair of vertices in the set. The algorithm is based on the depth-first search (DFS) technique. For any fixed DFS-tree T of G, cutpairs of G are partitioned into two types: a type 1 pair consists of an edge of T and a back edge; a type 2 pair consists of two edges of T. All type 1 pairs can easily be determined in O(|V|+|E|) time. The point is that an edge set KE(T) in which any type 2 pair is included can be found in O(|V|+|E|) time. All 3-edge-components of G appear as connected components if we delete from G all edges contained in type 1 pairs or in the edge set KE(T).

  • Compositional Synthesis for Cooperating Discrete Event Systems from Modular Temporal Logic Specifications

    Naoshi UCHIHIRA  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    380-391

    A Discrete Event System (DES) is a system that is modeled by a finite automaton. A Cooperating Discrete Event System (CDES) is a distributed system which consists of several local DESs which are synchronized with each other to accomplish its own goal. This paper describes the automatic synthesis of a CDES from a modular temporal logic specification. First, MPTS (Modular Practical Temporal Specification language) is proposed in which the new features (modular structure and domain specification) are appended to temporal logic. To overcome the "state explosion problem", which occurs in generating a global automaton in former synthesis methods using temporal logic, a compositional synthesis is proposed where automata are reduced at every composition step.

  • Analog VLSI Implementation of Adaptive Algorithms by an Extended Hebbian Synapse Circuit

    Takashi MORIE  Osamu FUJITA  Yoshihito AMEMIYA  

     
    PAPER

      Vol:
    E75-C No:3
      Page(s):
    303-311

    First, a number of issues pertaining to analog VLSI implementation of Backpropagation (BP) and Deterministic Boltzmann Machine (DBM) learning algorithms are clarified. According to the results from software simulation, a mismatch between the activation function and derivative generated by independent circuits degrades the BP learning performance. The perfomance can be improved, however, by adjusting the gain of the activation function used to obtain the derivative, irrespective of the original activation function. Calculation errors embedded in the circuits also degrade the learning preformance. BP learning is sensitive to offset errors in multiplication in the learning process, and DBM learning is sensitive to asymmetry between the weight increment and decrement processes. Next, an analog VLSI architecture for implementing the algorithms using common building block circuits is proposed. The evaluation results of test chips confirm that synaptic weights can be updated up to 1 MHz and that a resolution exceeding 14 bits can be attained. The test chips successfully perform XOR learning using each algorithm.

  • A Simulation Model of Hyperthermia by RF Capacitive Heating

    Yasutomo OHGUCHI  Naoki WATANABE  Yoshiro NIITSU  Osamu DOI  Ken KODAMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E75-D No:2
      Page(s):
    219-250

    A new model for a computer simulation of RF capacitive type hyperthermia has been developed by taking account of the following points. Blood flow is usually determined by many physiological parameters, but is regarded as a function of only blood temperature under some conditions. The temperature dependence of blood flow of tumors and normal tissues is assumed by referring the data obtained by Song et al. and Tanaka. The blood temperature which is elevated by externally applied power significantly affects temperatures of the body and the tumors. The transport of heat from the body surface is studied by considering air convection. These points are examined by experiments on a computer with simple phantom models and real patients. The results of simulation on the patient have shown a good agreement with clinical inspection based on CT images and a temperature of the stomach.

  • Exploiting Separability in Numerical Analysis of Nonlinear Systems

    Kiyotaka YAMAMURA  

     
    INVITED PAPER

      Vol:
    E75-A No:3
      Page(s):
    285-293

    The aim of this article is to show the effectiveness of exploiting separability in numerical analysis of nonlinear systems. Separability is a valuable property of nonlinear mappings which appears with surprising frequency in science and engineering. By exploiting this property, computational complexity of many numerical algorithms can be substantially improved. However, this idea has not been received much attention in the fields of electronics, information and communication engineerings. In recent years, efficient algorithms that exploit the separability have been proposed in the areas of circuit analysis, homotopy methods, integer labeling methods, nonlinear programming, information theory, numerical differentiation, and neural networks. In this article, these algorithms are surveyed, and it is shown that considerable improvement of computational efficiency can be achieved by exploiting the separability.

  • New Approaches for Measurement of Static Electricity toward Preventing ESD

    Osamu FUJIWARA  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    131-140

    Serious failures of the latest electronic equipments occur easily due to electrostatic discharge (ESD) , which can be caused frequently by the electrification phenomena of human-body walking on the floor. The number of the above damaging incidents has significantly been increasing with an increased use of integrated semiconductor elements with lower operation power. The most effective measures against the ESD consist in preventive ones, which are to obtain dynamic behaviors of the electric charge before the ESD happens, thereby preventing the charge accumulation. From this point of view, this paper describes new approaches for measurement of the static electricity directed toward preventing the ESD. First, a two-dimensional measurement method for visualizing charge distributions is described. This principle is based on visualizing the potential distribution induced in the array electrodes from the electrostatic fields. For showing usefulness of the visualization measurement, a prototype was built and attempts were made on the visualizations for the static electricity distributions of charged bodies. Second, a potential calculation of the human body charged by walking on the floor is described. A model was shown for analyzing the human-body potential on the floor, and the theoretical equation for describing the potential attenuation process was derived in the closed form in the Laplacian transformation domain. In order to obtain the typical half-life of the human-body potential, numerical computations were performed using a reverse Laplacian transformation. The experiments were also conducted for confirming the validity of the computed results. Finally, a new method is described for estimating dynamic behaviors of the occurrence charges of the human body electrified by walking-motions. Statistical measurements of the charges and potentials were made for the fundamental walking-motions specified here. The pace transitions of the potentials due to continuous walking and stepping were also measured and their results were explained from the electrification properties for the fundamental walking-motions.

  • Method for Estimating Electromagnetic Interference due to Unbalance in Telecommunications Line

    Fujio AMEMIYA  Nobuo KUWABARA  Tsuyoshi IDEGUCHI  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    141-147

    Information technology equipment connected to telecommunications line can be a source of electromagnetic interference. Two sources of interference have been under evaluation. One is the digital pulses in the switching regulator and the clock oscillator, and the other is the signal's common mode voltage. In this paper, the interference-inducing mechanism for the signal's common mode voltage and a method for measuring the interference are described. An equivalent circuit representing both the equipment and the line is derived on the basis of the interference-inducing model. A method for estimating the signal's common mode voltage from the differential mode voltage and the line unbalance is obtained using the equivalent circuit. It is confirmed that the level difference between the estimated and the measured common mode level is less than 3dB.

  • Effect of Reflected Light on Mode Partition Characteristics of Fabry-Perot Laser Diodes

    Akiyuki TAKEDA  Takeshi KAWAI  Masakazu MORI  Toshio GOTO  Akira MIYAUCHI  

     
    PAPER-Optical Communication

      Vol:
    E75-B No:3
      Page(s):
    217-225

    The effect of the externally reflected light on the mode partition characteristics of 1.3 µm Fabry-Perot laser diodes is studied experimentally and numerically. It is observed that the k-value increases monotonically with the DC bias current and the external reflection coefficient. Based on these experimental results, a numerical model to study the mode partition characteristics of laser diodes in the presence of external reflections is developed. The results calculated using this model agree well with the experimental ones. It is found that the mode partition noise is mainly caused by the interference between the light in the laser diode and the reflected light, and also by the fluctuations of the induced emission and absorption. In the time domain, their contribution to the mode partition noise is almost localized in the time region within 0.1nsec at the time when the optical pulse turns on.

  • Proof Procedures and Axiom Sets in Petri Net Models of Horn Clause Propositional Logic --Provability and Axiom Sets --

    Toshimasa WATANABE  Naomoto KATO  Kenji ONAGA  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    425-435

    The subject of the paper is to analyze time complexity of the minimum axiom set problem (MASHC) in the Horn clause propositional logic. MASHC is defined by "Given a set H of Horn clauses and a query Q, all in propositional logic, such that Q is provable over H, find an axiom set of minimum cardinality, HH, with respect to Q, where Q is provable over H if and only if Q can be shown to be true by repeating Modus Ponens starting from clauses of H under the assumption that all of them are originally assumed to be true". If Q is provable over H then H is called an axiom set (with respect to Q). As stated in the definition of MASHC, detecting if Q is provable over H is required. This leads us to a problem, called the provability detecting problem (PDPHC), defined by "Given a set H of Horn clauses and a query Q in propositional logic, determine if Q is provable over H". First an O(σ) algorithm BFSHC for PDPHC is given based on the breadth-first search, where σ is the formula size of a given set of Horn clauses. For MASHC, it is shown that the problem is NP-complete, and an O(σ) approximation algorithm FMAS is given. Its experimental evaluation is also presented.

  • Deriving Compositional Models for Concurrency Based on de Bakker-Zucker Metric Domain from Structured Operational Semantics

    Eiichi HORITA  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    400-409

    This paper investigates the compositionality of operational models for concurrency induced by labeled transition systems (LTS's). These models are defined on the basis of a metric domain first introduced by de Bakker and Zucker; the domain is a complete metric space consisting of tree-like structures called processes. Transition system specifications (TSS's) define LTS's; the set of states of such a LTS A is the set of terms generated by a signature Σ. For the syntactical operators F contained in Σ, semantic operations (on processes) associated with F are derived from the TSS S by which A is defined, provided that S satisfies certain syntactical restrictions. By means of these operations, the compositionality of the operational model induced by A is established. A similar result was obtained by Rutten from TTS's which define finitely branching LTS's. The main contribution of this paper is generalization of Rutten's result to be applicable to TSS's which are based on applicative languages including recursion, parameterized statements, and value passing, and which define infinitely branching LTS's. A version of typed λ-calculus incorporating µ-notation is employed as a formalism for treating recursion, parameterized statements, and value-passing. Infinitely branching LTS's are needed to treat programming languages including value passing such as CCS.

  • Numerical Analysis of Three Channel Waveguides Arranged Two-Dimensionally

    Hiroshi KUBO  Kiyotoshi YASUMOTO  Tokuo MIYAMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:3
      Page(s):
    339-347

    Optical couplers which are composed of three channel waveguides arranged two-dimensionally are investigated numerically. The mode-matching method that matches the boundary conditions in the sense of least squares is applied to this problem, using the hybrid-modal representation. The precise numerical results of the dispersion relations and field distributions are presented for the lowest three modes near the cutoff. The arrangement of three waveguides can be optimized so as to satisfy the condition for maximum power-transfer efficiency.

20421-20440hit(20498hit)