The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6541-6560hit(20498hit)

  • Enhancement of Modulation Speed of RSOA by Using Instantaneous Injection/Depletion Current

    Akira AGATA  Takayuki SANO  Kosuke NISHIMURA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1252-1257

    We propose and demonstrate a simple and novel technique to accelerate the carrier injection/depletion processes in an RSOA by applying instantaneous injection/depletion currents at the transition edges of the modulation signal to force the carrier density to respond at a high speed and, as a result, to increase its modulation speed. We theoretically and experimentally show that, by using the proposed technique, it is possible to obtain 5 Gbit/s optical BPSK signal from an RSOA having a modulation bandwidth of only 0.9 GHz.

  • Efficient Digital Compensation Technique for Path Imbalances in LINC Transmitters Using Complex Gain and Linear Model

    Hyunchul KU  

     
    BRIEF PAPER

      Vol:
    E95-C No:7
      Page(s):
    1222-1225

    In this paper, a simple and efficient design scheme for digital compensation of path imbalances in linear amplification with nonlinear component (LINC) transmitters is proposed to reduce signal distortion. For the LINC transmitters including path imbalances, an error vector magnitude (EVM) is analyzed and an optimal complex gain that minimizes the EVM is extracted. In addition, a straight-forward compensation scheme for the path imbalances is proposed using a least square method for complex gains of each radio frequency path. The effectiveness of the proposed method is compared with the other digital compensation methods. A LINC transmitter with multi-level quadrature amplitude modulation input signals is experimented to verify the performance of the suggested scheme. The proposed compensator can reduce the EVM and the adjacent channel power ratio of the output signals less than 2% and 45 dBc, respectively.

  • Analytical Solution for the Scattering by a Cylinder Perpendicular to the Narrow Walls inside a Rectangular Waveguide and Its Application to εr and μr Measurement

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1211-1221

    In this paper, a new swept-frequency method for the measurement of the complex permittivity and permeability of materials is proposed. The method is based on the S-parameters measurement of a cylindrical material placed inside a rectangular waveguide, where the axis of the cylinder is perpendicular to the narrow waveguide walls. The usage of cylinders in measurement is beneficial because they are easy to fabricate and handle. A novel exact solution of the field scattered by the cylinder is developed. The solution is based on expanding the field in a sum of orthogonal modes in cylindrical coordinates. Excitation coefficients relating the cylindrical scattered field to the waveguide modes are derived, and are used to rigorously formulates the S-parameters. Measurement are performed in the S-band with two dielectric materials (PTFE, nylon), and in the X-band with one magnetic material (ferrite epoxy). The measurement results agree with those from the literature.

  • Introduction to Latest RF ATE with Low Test Cost Solutions Open Access

    Masayuki KIMISHIMA  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1147-1153

    This paper describes latest RF Automated Test Equipment (RF ATE) technologies that include device under test (DUT) connections, a calibration method, and an RF test module mainly focusing on low cost of test (COT). Most important respect for low COT is how achieve a number of simultaneous measurements and short test time as well as a plain calibration. We realized these respects by a newly proposed calibration method and a drastically downsized RF test module with multiple resources and high throughput. The calibration method is very convenient for RF ATE. Major contribution for downsizing of the RF test module is RF circuit technology in form of RF functional system in package (RF-SIPs), resulting in very attractive test solutions.

  • Group Secret Key Agreement Based on Radio Propagation Characteristics in Wireless Relaying Systems

    Takayuki SHIMIZU  Hisato IWAI  Hideichi SASAOKA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2266-2277

    We consider secret key agreement for multiple terminals based on radio propagation characteristics in a wireless relaying system where more than two terminals communicate with each other via a relay. In this system, the multiple terminals share a common secret key generated from their radio propagation characteristics with the help of the relay in the presence of an eavesdropper. In this paper, we present three secret key agreement schemes: an amplify-and-forward (AF) scheme, a signal-combining amplify-and-forward (SC-AF) scheme, and a multiple-access amplify-and-forward (MA-AF) scheme. The key idea of these schemes is that each terminal shares the fading coefficients between all terminals and the relay, and use them as the source of a secret key. The AF scheme is based on a conventional amplify-and-forward two-way relaying method, whereas in the SC-AF scheme and the MA-AF scheme, we apply the idea of analog network coding to secret key agreement. We analyze eavesdropping strategies and show that the AF scheme is not secure if the eavesdropper is located near the relay and can receive signals from the relay without multipath fading and noise. Simulation results show that the SC-AF and MA-AF schemes are effective.

  • Training Convergence in Range-Based Cooperative Positioning with Stochastic Positional Knowledge

    Ziming HE  Yi MA  Rahim TAFAZOLLI  

     
    LETTER-Information Theory

      Vol:
    E95-A No:7
      Page(s):
    1200-1204

    This letter investigates the training convergence in range-based cooperative positioning with stochastic positional knowledge. Firstly, a closed-form of squared position-error bound (SPEB) is derived with error-free ranging. Using the derived closed-form, it is proved that the SPEB reaches its minimum when at least 2 out of N (> 2) agents send training sequences. Finally, numerical results are provided to elaborate the theoretical analysis with zero-mean Gaussian ranging errors.

  • Security Condition for Exact Localization in Wireless Ad Hoc Networks

    Jin Seok KIM  Dae Hyun YUM  Sung Je HONG  Jong KIM  Pil Joong LEE  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2459-2462

    As deployment of wireless ad hoc networks for location-based services increases, accurate localization of mobile nodes is becoming more important. Localization of a mobile node is achieved by estimating its distances from a group of anchor nodes. If some anchors are malicious and colluding, localization accuracy cannot be guaranteed. In this article, we present the security conditions for exact localization in the presence of colluding malicious anchors. We first derive the minimum number of truthful anchors that are required for exact localization in 2-D Euclidean space where some anchors may be collinear. Second, we extend our security condition to 3-D localization where some anchors may be coplanar.

  • Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline

    Min-Hua HO  Wei-Hong HSU  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1195-1202

    In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.

  • Identification Schemes from Key Encapsulation Mechanisms

    Hiroaki ANADA  Seiko ARITA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:7
      Page(s):
    1136-1155

    We propose a generic conversion from a key encapsulation mechanism (KEM) to an identification (ID) scheme. The conversion derives the security for ID schemes against concurrent man-in-the-middle (cMiM) attacks from the security for KEMs against adaptive chosen ciphertext attacks on one-wayness (one-way-CCA2). Then, regarding the derivation as a design principle of ID schemes, we develop a series of concrete one-way-CCA2 secure KEMs. We start with El Gamal KEM and prove it secure against non-adaptive chosen ciphertext attacks on one-wayness (one-way-CCA1) in the standard model. Then, we apply a tag framework with the algebraic trick of Boneh and Boyen to make it one-way-CCA2 secure based on the Gap-CDH assumption. Next, we apply the CHK transformation or a target collision resistant hash function to exit the tag framework. And finally, as it is better to rely on the CDH assumption rather than the Gap-CDH assumption, we apply the Twin DH technique of Cash, Kiltz and Shoup. The application is not “black box” and we do it by making the Twin DH technique compatible with the algebraic trick. The ID schemes obtained from our KEMs show the highest performance in both computational amount and message length compared with previously known ID schemes secure against concurrent man-in-the-middle attacks.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Asymptotic Performance Analysis of STBCs from Coordinate Interleaved Orthogonal Designs in Shadowed Rayleigh Fading Channels

    Chanho YOON  Hoojin LEE  Joonhyuk KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2501-2504

    In this letter, we provide an asymptotic error rate performance evaluation of space-time block codes from coordinate interleaved orthogonal designs (STBCs-CIODs), especially in shadowed Rayleigh fading channels. By evaluating a simplified probability density function (PDF) of Rayleigh and Rayleigh-lognormal channels affecting the STBC-CIOD system, we derive an accurate closed-form approximation for the tight upper and lower bounds on the symbol error rate (SER). We show that shadowing asymptotically affects coding gain only, and conclude that an increase in diversity order under shadowing causes slower convergence to asymptotic bound due to the relatively larger loss of coding gain. By comparing the derived formulas and Monte-Carlo simulations, we validate the accuracy of the theoretical results.

  • Amplify-and-Forward Relay Filter Design with MIMO System for Two-Way Relay Channels

    Jeehwan NOH  Chungyong LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2442-2445

    This letter considers a two-way relaying network where two nodes exchange their information based on the principle of physical layer network coding (PNC). We study the amplify-and-forward (AF) relay filter design with multiple-input multiple-output (MIMO) system. In order to maximize the sum-rate for information exchange, we propose a relay filter for two-way relaying network. Simulation results show that the proposed scheme performs better than the conventional schemes for two-way relay channel.

  • A Serial Unequal Error Protection Codes System Using MMSE-FDE for Fading Channels

    Satoshi YAMAZAKI  David K. ASANO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:7
      Page(s):
    1205-1210

    In our previous research, to achieve unequal error protection (UEP), we proposed a scheme which encodes the data by randomly switching between several codes which use different signal constellations and showed the effectiveness in AWGN channels. In this letter, we propose our UEP system using MMSE-FDE for fast and selective fading by using the fact that importance levels are changed every few symbols, i.e., every block, in the proposed system. We confirmed the improvement in BER performance and the effectiveness of adaptive equalization for the proposed system in fading channels. Moreover, in fading channels we confirmed the validity of the theoretical tradeoff shown in static conditions.

  • Algorithm Understanding of the J-Fast H Filter Based on Linear Prediction of Input Signal

    Kiyoshi NISHIYAMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:7
      Page(s):
    1175-1179

    The hyper H∞ filter derived in our previous work provides excellent convergence, tracking, and robust performances for linear time-varying system identification. Additionally, a fast algorithm of the hyper H∞ filter, called the fast H∞ filter, is successfully developed so that identification of linear system with impulse response of length N is performed at a computational complexity of O(N). The gain matrix of the fast filter is recursively calculated through estimating the forward and backward linear prediction coefficients of an input signal. This suggests that the fast H∞ filter may be applicable to linear prediction of the signal. On the other hand, an alternative fast version of the hyper H∞ filter, called the J-fast H∞ filter, is derived using a J-unitary array form, which is amenable to parallel processing. However, the J-fast H∞ filter explicitly includes no linear prediction of input signals in the algorithm. This work reveals that the forward and backward linear prediction coefficients and error powers of the input signal are indeed included in the recursive variables of the J-fast H∞ filter. These findings are verified by computer simulations.

  • Silicon Based Millimeter Wave and THz ICs Open Access

    Jixin CHEN  Wei HONG  Hongjun TANG  Pinpin YAN  Li ZHANG  Guangqi YANG  Debin HOU  Ke WU  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1134-1140

    In this paper, the research advances in silicon based millimeter wave and THz ICs in the State Key Laboratory of Millimeter Waves is reviewed, which consists of millimeter wave amplifiers, mixers, oscillators at Q, V and W and D band based on CMOS technology, and several research approaches of THz passive ICs including cavity and filter structures using SIW-like (Substrate Integrated Waveguide-like) guided wave structures based on CMOS and MEMs process. The design and performance of these components and devices are presented.

  • Discriminative Textural Features for Image and Video Colorization

    Michal KAWULOK  Jolanta KAWULOK  Bogdan SMOLKA  

     
    PAPER-Image Synthesis

      Vol:
    E95-D No:7
      Page(s):
    1722-1730

    Image colorization is a semi-automatic process of adding colors to monochrome images and videos. Using existing methods, required human assistance can be limited to annotating the image with color scribbles or selecting a reference image, from which the colors are transferred to a source image or video sequence. In the work reported here we have explored how to exploit the textural information to improve this process. For every scribbled image we determine the discriminative textural feature domain. After that, the whole image is projected onto the feature space, which makes it possible to estimate textural similarity between any two pixels. For single image colorization based on a set of color scribbles, our contribution lies in using the proposed feature space domain rather than the luminance channel. In case of color transfer used for colorization of video sequences, the feature space is generated based on a reference image, and textural similarity is used to match the pixels between the reference and source images. We have conducted extensive experimental validation which confirmed the importance of using textural information and demonstrated that our method significantly improves colorization result.

  • Switching Characteristics in Variable-Index Arrayed Waveguides Using Thin-Film Heater

    Satoshi YANAGI  Yosuke MURAKAMI  Yuki YAMAZAKI  Kazuhiko SHIMOMURA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1265-1271

    We have demonstrated switching characteristics in a wavelength switch based on multiple GaInAs/InP quantum wells. It consisted of straight arrayed waveguides with a linearly varying refractive index distribution. The refractive index can be changed via the thermo-optic (TO) effect. Using a Ti/Au thin-film heater to generate the TO effect, we realized four-port switching at four demultiplexed wavelengths. In addition, by changing the structure of the heater from rectangular to triangular, the power consumption for four-port switching was reduced by half.

  • DISWOP: A Novel Scheduling Algorithm for Data-Intensive Workflow Optimizations

    Yuyu YUAN  Chuanyi LIU  Jie CHENG  Xiaoliang WANG  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E95-D No:7
      Page(s):
    1839-1846

    Execution performance is critical for large-scale and data-intensive workflows. This paper proposes DISWOP, a novel scheduling algorithm for data-intensive workflow optimizations; it consists of three main steps: workflow process generation, task & resource mapping, and task clustering. To evaluate the effectiveness and efficiency of DISWOP, a comparison evaluation of different workflows is conducted a prototype workflow platform. The results show that DISWOP can speed up execution performance by about 1.6-2.3 times depending on the task scale.

  • SOBR: A High-Performance Shared Output Buffered Router for Networks-on-Chip

    Yancang CHEN  Lunguo XIE  

     
    LETTER-Computer System

      Vol:
    E95-D No:7
      Page(s):
    2002-2005

    This paper presents a single-cycle shared output buffered router for Networks-on-Chip. In output ports, each input port always has an output virtual-channel (VC) which can be exchanged by VC swapper. Its critical path is only 24 logic gates, and it reduces 9.4% area overhead compared with the classical router.

  • NADH Sensing Using Neutral Red Functionalized Carbon Nanotube/Plasma-Polymerized Film Composite Electrode

    Tatsuya HOSHINO  Hitoshi MUGURUMA  

     
    BRIEF PAPER-Organic Molecular Electronics

      Vol:
    E95-C No:7
      Page(s):
    1300-1303

    A novel fabrication approach for electrochemical sensing of nicotinamide adenine dinucleotide (NADH) using neutral red (NR) functinalized carbon nanotube/plasma-polymerized film composite electrode is reported. The configuration of sensing electrode was NR-functionalized CNTs sandwiched between two acetonitrile PPFs on sputtered gold thin film. The NR as an electron transfer mediator shuttles the electron from the CNT to gold electrode. Due to the synergistic effect between NR and CNT, the resulting electrode showed the lower detection potential and the larger sensitivity (current) than that of NR or CNT alone. The sensor revealed a sensitivity of 29 µA mM-1 cm-2 at +0.15 V vs. Ag/AgCl, linear dynamic range of 0.08–4.2 mM, a detection limit of 18 µM at S/N=3, and a response time of 7 s.

6541-6560hit(20498hit)