The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6301-6320hit(20498hit)

  • General Constructions for (υ,4,1) Optical Orthogonal Codes via Perfect Difference Families

    Jing JIANG  Dianhua WU  Pingzhi FAN  

     
    LETTER-Sequences

      Vol:
    E95-A No:11
      Page(s):
    1921-1925

    Optical orthogonal codes (OOCs) were introduced by Salehi, as signature sequences to facilitate multiple access in optical fibre networks. The existence of optimal (υ,3,1)-OOCs had been solved completely. Although there are some partial results, the existence of optimal (υ, 4, 1)-OOCs is far from settled. In this letter, three general constructions for (υ, 4, 1)-OOCs via perfect difference families are presented, new infinite classes of (υ, 4, 1)-OOCs are then obtained.

  • No-Reference Quality Estimation for Video-Streaming Services Based on Error-Concealment Effectiveness

    Toru YAMADA  Yoshihiro MIYAMOTO  Takao NISHITANI  

     
    PAPER-Multimedia Environment Technology

      Vol:
    E95-A No:11
      Page(s):
    2007-2014

    This paper proposes a video-quality estimation method based on a no-reference model for realtime quality monitoring in video-streaming services. The proposed method analyzes both bitstream information and decoded pixel information to estimate video-quality degradation by transmission errors. Video quality in terms of a mean squared error (MSE) between degraded video frames and error-free video frames is estimated on the basis of the number of impairment macroblocks in which the quality degradation has not been possible to be concealed. Error-concealment effectiveness is evaluated using motion information and luminance discontinuity at the boundaries of impairment regions. Simulation results show a high correlation (correlation coefficients of 0.93) between the actual MSE and the number of macroblocks in which error concealment has not been effective. These results show that the proposed method works well in reatime quality monitoring for video-streaming services.

  • Fractionally Spaced Equalization for Asynchronous Broadband Analog Network Coding

    Zhaoxi FANG  Feng LIANG  Shaozhong ZHANG  Xiaolin ZHOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3617-3620

    Timing asynchronism strongly degrades the performance of analog network coded (ANC) bi-directional transmission. This letter investigates receiver design for asynchronous broadband bi-directional transmission over frequency selective fading channels. Based on time domain oversampling, we propose fractionally spaced frequency domain minimum mean square error (MMSE) equalizers for bi-directional ANC based on orthogonal frequency division multiplexing (OFDM) and cyclic prefixed single carrier (CP-SC) radio access. Simulation results show that the proposed fractionally spaced equalizer (FSE) can eliminate the negative effect of timing misalignment in bi-directional transmissions.

  • Automatic Parameter Adjustment Method for Audio Equalizer Employing Interactive Genetic Algorithm

    Yuki MISHIMA  Yoshinobu KAJIKAWA  

     
    LETTER-Engineering Acoustics

      Vol:
    E95-A No:11
      Page(s):
    2036-2040

    In this paper, we propose an automatic parameter adjustment method for audio equalizers using an interactive genetic algorithm (IGA). It is very difficult for ordinary users who are not familiar with audio devices to appropriately adjust the parameters of audio equalizers. We therefore propose a system that can automatically adjust the parameters of audio equalizers on the basis of user's evaluation of the reproduced sound. The proposed system utilizes an IGA to adjust the gains and Q values of the peaking filters included in audio equalizers. Listening test results demonstrate that the proposed system can appropriately adjust the parameters on the basis of the user's evaluation.

  • Novel Channel Allocation Algorithm Using Spectrum Control Technique for Effective Usage of both Satellite Transponder Bandwidth and Satellite Transmission Power

    Katsuya NAKAHIRA  Jun-ichi ABE  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3393-3403

    This paper proposes a new channel allocation algorithm for satellite communication systems. The algorithm is based on a spectrum division transmission technique as well as a spectrum compression transmission technique that we have developed in separate pieces of work. Using these techniques, the algorithm optimizes the spectrum bandwidth and a MODCOD (modulation and FEC error coding rate) scheme to balance the usable amount of satellite transponder bandwidth and satellite transmission power. Moreover, it determines the center frequency and bandwidth of each divided subspectra depending on the unused bandwidth of the satellite transponder bandwidth. As a result, the proposed algorithm enables flexible and effective usage of satellite resources (bandwidth and power) in channel allocations and thus enhances satellite communication (SATCOM) system capacity.

  • Properties and Effective Extensions of Local Similarity-Based Pixel Value Restoration for Impulse Noise Removal

    Go TANAKA  Noriaki SUETAKE  Eiji UCHINO  

     
    PAPER-Image Processing

      Vol:
    E95-A No:11
      Page(s):
    2023-2031

    In this paper, impulse noise removal for digital images is handled. It is well-known that switching-type processing is effective for the impulse noise removal. In the process, noise-corrupted pixels are first detected, and then, filtering is applied to the detected pixels. This switching process prevents distorting original signals. A noise detector is of course important in the process, a filter for pixel value restoration is also important to obtain excellent results. The authors have proposed a local similarity-based filter (LSF). It utilizes local similarity in a digital image and its capability against restoration of orderly regions has shown in the previous paper. In this paper, first, further experiments are carried out and properties of the LSF are revealed. Although LSF is inferior to an existing filter when disorderly regions are processed and evaluated by the peak signal-to-noise ratio, its outputs are subjectively adequate even in the case. If noise positions are correctly detected, capability of the LSF is guaranteed. On the other hand, some errors may occur in actual noise detection. In that case, LSF sometimes fails to restoration. After properties are examined, we propose two effective extensions to the LSF. First one is for computational cost reduction and another is for color image processing. The original LSF is very time consuming, and in this paper, computational cost reduction is realized introducing a search area. Second proposal is the vector LSF (VLSF) for color images. Although color images can be processed using a filter, which is for monochrome images, to each color component, it sometimes causes color drift. Hence vector processing has been investigated so far. However, existing vector filters do not excel in preservation of orderly pattern although color drift is suppressed. Our proposed VLSF is superior both in orderly pattern preservation and color drift suppression. Effectiveness of the proposed extensions to LSF is verified through experiments.

  • Generalized Shisen-Sho is NP-Complete

    Chuzo IWAMOTO  Yoshihiro WADA  Kenichi MORITA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E95-D No:11
      Page(s):
    2712-2715

    Shisen-Sho is a tile-based one-player game. The instance is a set of 136 tiles embedded on 817 rectangular grids. Two tiles can be removed if they are labeled by the same number and if they are adjacent or can be connected with at most three orthogonal line segments. Here, line segments must not cross tiles. The aim of the game is to remove all of the 136 tiles. In this paper, we consider the generalized version of Shisen-Sho, which uses an arbitrary number of tiles embedded on rectangular grids. It is shown that deciding whether the player can remove all of the tiles is NP-complete.

  • A Novel 400-Gb/s (100-Gb/s4) Physical-Layer Architecture Using Low-Power Technology

    Masashi KONO  Akihiro KANBE  Hidehiro TOYODA  Shinji NISHIMURA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3437-3444

    A novel 400-Gb/s (100-Gb/s4) physical-layer architecture for the next-generation Ethernet – using 100-Gb/s serial (optical single-wavelength) transmission – is proposed. As for the next-generation 400-Gb/s Ethernet, additional requirements from the market, such as power reduction and further miniaturization in addition to attaining even higher transmission speed, must be satisfied. To satisfy these requirements, a 100-Gb/s4 Ethernet physical-layer architecture is proposed. This architecture uses a 100-Gb/s serial (optical single-wavelength) transmission Ethernet and low-power technologies for a multi-lane transmission Ethernet. These technologies are implemented on a 100-Gb/s serial (optical single wavelength) transmission Ethernet using field-programmable gate arrays (FPGAs). Experimental evaluation of this implementation demonstrates the feasibility of low-power 400-Gb/s Ethernet.

  • A Note on the Construction of Differentially Uniform Permutations Using Extension Fields

    Qichun WANG  Haibin KAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:11
      Page(s):
    2080-2083

    Constructing APN or 4-differentially uniform permutations achieving all the necessary criteria is an open problem, and the research on it progresses slowly. In ACISP 2011, Carlet put forth an idea for constructing differentially uniform permutations using extension fields, which was illustrated with a construction of a 4-differentially uniform (n,n)-permutation. The permutation has optimum algebraic degree and very good nonlinearity. However, it was proved to be a permutation only for n odd. In this note, we investigate further the construction of differentially uniform permutations using extension fields, and construct a 4-differentially uniform (n,n)-permutation for any n. These permutations also have optimum algebraic degree and very good nonlinearity. Moreover, we consider a more general type of construction, and illustrate it with an example of a 4-differentially uniform (n,n)-permutation with good cryptographic properties.

  • Performance of Spatial and Temporal Error Concealment Method for 3D DWT Video Coding in Packet Loss Channel

    Hirokazu TANAKA  Sunmi KIM  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image Processing

      Vol:
    E95-A No:11
      Page(s):
    2015-2022

    A new spatial and temporal error concealment method for three-dimensional discrete wavelet transform (3D DWT) video coding is analyzed. 3D DWT video coding employing dispersive grouping (DG) and two-step error concealment is an efficient method in a packet loss channel [20],[21]. In the two-step error concealment method, the interpolations are only spatially applied however, higher efficiency of the interpolation can be expected by utilizing spatial and temporal similarities. In this paper, we propose an enhanced spatial and temporal error concealment method in order to achieve higher error concealment (EC) performance in packet loss networks. In the temporal error concealment method, structural similarity (SSIM) index is employed for inter group of pictures (GOP) EC and minimum mean square error (MMSE) is used for intra GOP EC. Experimental results show that the proposed method can obtain remarkable performance compared with the conventional methods.

  • Design of Approximate 2-Degree-of-Freedom Digital Controller for a Boost DC-DC Converter

    Yoshihiro OHTA  Kohji HIGUCHI  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:11
      Page(s):
    1810-1816

    If a duty ratio, a load resistance and an input voltage in a boost DC-DC converter are changed, the dynamic characteristics are varied greatly, that is, the boost DC-DC converter has non-linear characteristics. In many applications of the boost DC-DC converters, the loads cannot be specified in advance, and they will be changed suddenly from no load to full load. In the boost DC-DC converter, a conventional single controller cannot be adapted to change dynamics and it occurs large output voltage variation. In this paper, an approximate 2-degree-of-freedom (A2DOF) digital controller for suppressing the change of step response characteristics and the variation of an output voltage in load sudden change is proposed. Experimental studies using a micro-processor for the controller demonstrate that this type of digital controller is effective to suppress the variations of the output voltages.

  • Joint Time-Frequency Diversity for Single-Carrier Block Transmission in Frequency Selective Channels

    Jinsong WU  Steven D. BLOSTEIN  Qingchun CHEN  Pei XIAO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1912-1920

    In time-varying frequency selective channels, to obtain high-rate joint time-frequency diversity, linear dispersion coded orthogonal frequency division multiplexing (LDC-OFDM), has recently been proposed. Compared with OFDM systems, single-carrier systems may retain the advantages of lower PAPR and lower sensitivity to carrier frequency offset (CFO) effects, which motivates this paper to investigate how to achieve joint frequency and time diversity for high-rate single-carrier block transmission systems. Two systems are proposed: linear dispersion coded cyclic-prefix single-carrier modulation (LDC-CP-SCM) and linear dispersion coded zero-padded single-carrier modulation (LDC-ZP-SCM) across either multiple CP-SCM or ZP-SCM blocks, respectively. LDC-SCM may use a layered two-stage LDC decoding with lower complexity. This paper analyzes the diversity properties of LDC-CP-SCM, and provides a sufficient condition for LDC-CP-SCM to maximize all available joint frequency and time diversity gain and coding gain. This paper shows that LDC-ZP-SCM may be effectively equipped with low-complexity minimum mean-squared error (MMSE) equalizers. A lower complexity scheme, linear transformation coded SCM (LTC-SCM), is also proposed with good diversity performance.

  • Low-Cost Perturbation-Based ICI Equalizers for OFDMA Mobile Systems

    Hsin-De LIN  Tzu-Hsien SANG  Jiunn-Tsair CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3509-3518

    For advanced mobile communication systems that adopt orthogonal frequency-division multiple access (OFDMA) technologies, intercarrier interference (ICI) significantly degrades performance when mobility is high. Standard specifications and concerns about complexity demand low-cost methods with deployment readiness and decent performance. In this paper, novel zero forcing (ZF) and minimum mean-square error (MMSE) equalizers based on per-subcarrier adaptive (PSA) processing and perturbation-based (PB) approximation are introduced. The proposed equalizers strike a good balance between implementation cost and performance; therefore they are especially suitable for OFDMA downlink receivers. Theoretical analysis and simulations are provided to verify our claims.

  • MLICA-Based Separation Algorithm for Complex Sinusoidal Signals with PDF Parameter Optimization

    Tetsuhiro OKANO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:11
      Page(s):
    3556-3562

    Blind source separation (BSS) techniques are required for various signal decomposing issues. Independent component analysis (ICA), assuming only a statistical independence among stochastic source signals, is one of the most useful BSS tools because it does not need a priori information on each source. However, there are many requirements for decomposing multiple deterministic signals such as complex sinusoidal signals with different frequencies. These requirements may include pulse compression or clutter rejection. It has been theoretically shown that an ICA algorithm based on maximizing non-Gaussianity successfully decomposes such deterministic signals. However, this ICA algorithm does not maintain a sufficient separation performance when the frequency difference of the sinusoidal waves becomes less than a nominal frequency resolution. To solve this problem, this paper proposes a super-resolution algorithm for complex sinusoidal signals by extending the maximum likelihood ICA, where the probability density function (PDF) of a complex sinusoidal signal is exploited as a priori knowledge, in which the PDF of the signal amplitude is approximated as a Gaussian distribution with an extremely small standard deviation. Furthermore, we introduce an optimization process for this standard deviation to avoid divergence in updating the reconstruction matrix. Numerical simulations verify that our proposed algorithm remarkably enhances the separation performance compared to the conventional one, and accomplishes a super-resolution separation even in noisy situations.

  • Cooperative Sensing with Distributed Pre-Detection for Gathering Sensing Information on Shared Primary Spectrum

    Mai OHTA  Takeo FUJII  Kazushi MURAOKA  Masayuki ARIYOSHI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:11
      Page(s):
    1980-1990

    In this study, we propose a cooperative sensing with distributed pre-detection for gathering sensing information on shared primary system. We have proposed a system that gathers multiple sensing information by using the orthogonal narrowband signal; the system is called the orthogonal frequency-based sensing information gathering (OF-SIG) method. By using this method, sensing information from multiple secondary nodes can be gathered from the surrounding secondary nodes simultaneously by using the orthogonal narrowband signals. The advantage of this method is that the interference from each node is small because a narrowband tone signal is transmitted from each node. Therefore, if appropriate power and transmission control are applied at the surrounding nodes, the sensing information can be gathered in the same spectrum as the primary system. To avoid interference with the primary receiver, we propose a cooperative sensing with distributed pre-detection for gathering sensing information in each node by limiting sensing node power. In the proposed method, the number of sensing information transmitting nodes depends on the pre-detection ability of the individual sensing at each node. Then the secondary node can increase the transmit power by improving the sensing detection ability, and the secondary node can gather the sensing information from the surrounding secondary nodes which are located more far by redesign the transmit power of the secondary nodes. Here, we design the secondary transmit power based on OF-SIG while considering the aggregated interference from multiple sensing nodes and individual sensing ability. Finally we confirm the performance of the cooperative sensing of the proposed method through computer simulation.

  • A Dynamic Sleep Interval Decision Scheme for Power-Saving with Minimum Delay in IEEE 802.16e Mobile WiMAX

    Bong Keol SHIN  Ju Wook JANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3609-3612

    We observe that the state-of-the-art power-saving mechanisms (PSM) for IEEE 802.16e is neither optimal in terms of delay nor in terms of energy consumption. We propose a new PSM which achieves the optimality in terms of the average buffering delay without increasing energy consumption. In order to do so, we derive a formula which relates the average buffering delay to sleep intervals. Simulation results show that our scheme surpasses the BTE algorithm (used by the current IEEE 802.16e Mobile Stations) by 56.75–76% and the PSID algorithm by 8.52–24.39% in terms of the delay-energy consumption product.

  • Low-Complexity GSVD-Based Beamforming and Power Allocation for a Cognitive Radio Network

    Jaehyun PARK  Yunju PARK  Sunghyun HWANG  Byung Jang JEONG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:11
      Page(s):
    3536-3544

    In this paper, low-complexity generalized singular value decomposition (GSVD) based beamforming schemes are proposed for a cognitive radio (CR) network in which multiple secondary users (SUs) with multiple antennas coexist with multiple primary users (PUs). In general, optimal beamforming, which suppresses the interference caused at PUs to below a certain threshold and maximizes the signal-to-interference-plus-noise ratios (SINRs) of multiple SUs simultaneously, requires a complicated iterative optimization process. To overcome the computational complexity, we introduce a signal-to-leakage-plus-noise ratio (SLNR) maximizing beamforming scheme in which the weight can be obtained by using the GSVD algorithm, and does not require any iterations or matrix squaring operations. Here, to satisfy the leakage constraints at PUs, two linear methods, zero forcing (ZF) preprocessing and power allocation, are proposed.

  • High Order Limited Random Sequence in Analog-to-Information Converter for Distributed Compressive Sensing

    Chao ZHANG  Zhipeng WU  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:11
      Page(s):
    1998-2006

    Limited Random Sequence (LRS) is quite important for Analog-to-Information Converter (AIC) because it determines the random sampling scheme and the resultant performance. LRS is established with the elements of “0” and “1”. The “1” appears randomly in the segment of the sequence, so that the production of the original signal and LRS can be considered as the approximation of the random sampling of the original signal. The random sampling result can perfectly recover the signal with Compressive Sensing (CS) algorithm. In this paper, a high order LRS is proposed for the AIC design in Distributed Compressive Sensing (DCS), which has the following three typical features: 1) The high order LRS has the elements of integer which can indicate the index number of the sensor in DCS. 2) High order LRS can adapt to the sparsity variation of the original signal detected by each sensor. 3) Employing the AIC with high order LRS, the DCS algorithm can recover the signal with very low sampling rate, usually above 2 orders less than the traditional distributed sensors. In the paper, the scheme and the construction algorithm of high order LRS are proposed. The performance is evaluated with the application studies of the distributed sensor network and the camera picture correspondingly.

  • A Comprehensive Instrument for Measuring Individual Competency of IT Applications in an Enterprise IT Environment

    Chui Young YOON  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:11
      Page(s):
    2651-2657

    An instrument that can efficiently measure individual competency of IT applications (ICITA) is presented. It allows an organization to develop and manage the IT application capability of individuals working in an enterprise IT environment. The measurement items are generated from the definition and major components of individual competency of IT applications. The reliability and validity of the instrument construct are verified by factor and correlation analysis. A 15-item instrument is proposed to efficiently measure individual competency of IT applications and the instrument will contribute to the improved ICITA of human resources working in an enterprise IT environment.

  • Low PAPR Precoding Design with Dynamic Channel Assignment for SCBT Communication Systems

    Juinn-Horng DENG  Sheng-Yang HUANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3580-3584

    The single carrier block transmission (SCBT) system has become one of the most popular modulation systems because of its low peak to average power ratio (PAPR). This work proposes precoding design on the transmitter side to retain low PAPR, improve performance, and reduce computational complexity on the receiver side. The system is designed according to the following procedure. First, upper-triangular dirty paper coding (UDPC) is utilized to pre-cancel the interference among multiple streams and provide a one-tap time-domain equalizer for the SCBT system. Next, to solve the problem of the high PAPR of the UDPC precoding system, Tomlinson-Harashima precoding (THP) is developed. Finally, since the UDPC-THP system is degraded by the deep fading channels, the dynamic channel on/off assignment by the maximum capacity algorithm (MCA) and minimum BER algorithm (MBA) is proposed to enhance the bit error rate (BER) performance. Simulation results reveal that the proposed precoding transceiver can provide excellent BER and low PAPR performances for the SCBT system over a multipath fading channel.

6301-6320hit(20498hit)