The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6561-6580hit(20498hit)

  • Asymmetric Learning Based on Kernel Partial Least Squares for Software Defect Prediction

    Guangchun LUO  Ying MA  Ke QIN  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:7
      Page(s):
    2006-2008

    An asymmetric classifier based on kernel partial least squares is proposed for software defect prediction. This method improves the prediction performance on imbalanced data sets. The experimental results validate its effectiveness.

  • Precoder Design and Capacity Analysis for Multi-Antenna Full-Duplex Relay

    Young-Woo KWAK  Jong-Ho LEE  Yong-Hwa KIM  Seong-Cheol KIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2446-2450

    In this letter, a precoding design for a multiple-input multiple-output (MIMO) full-duplex relay (FDR) system is proposed. For this system, mitigating the self-interference imposed by the transmit antennas on the receive antennas in the same relay station is crucial for improving the performance of the FDR system. The precoding scheme designed in this study uses block-diagonalization (BD). Using this precoding scheme, FDR capacity analysis is performed in the MIMO downlink relay system. Numerical results on system performance in terms of capacity are shown and discussed.

  • A Statistical Model-Based Speech Enhancement Using Acoustic Noise Classification for Robust Speech Communication

    Jae-Hun CHOI  Joon-Hyuk CHANG  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E95-B No:7
      Page(s):
    2513-2516

    In this paper, we present a speech enhancement technique based on the ambient noise classification that incorporates the Gaussian mixture model (GMM). The principal parameters of the statistical model-based speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter of the noise estimation, are set according to the classified context to ensure best performance under each noise. For real-time context awareness, the noise classification is performed on a frame-by-frame basis using the GMM with the soft decision framework. The speech absence probability (SAP) is used in detecting the speech absence periods and updating the likelihood of the GMM.

  • Metal-Cavity Nanolasers and NanoLEDs Open Access

    Shun Lien CHUANG  Chi-Yu NI  Chien-Yao LU  Akira MATSUDAIRA  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1235-1243

    We present the theory and experiment of metal-cavity nanolasers and nanoLEDs flip-chip bonded to silicon under electrical injection at room temperature. We first review the recent progress on micro- and nanolasers. We then present the design rule and our theoretical model. We show the experimental results of our metal-cavity surface-emitting microlasers and compare with our theoretical results showing an excellent agreement. We found the important contributions of the nonradiative recombination currents including Auger recombination, surface recombination, and leakage currents. Finally, experimental demonstration of electrical injection nanoLEDs toward subwavelength nanoscale lasers is reported.

  • An Improved Hybrid LUT-Based Architecture for Low-Error and Efficient Fixed-Width Squarer

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:7
      Page(s):
    1180-1184

    In this paper, an improved hybrid LUT-based architecture for low-error and efficient fixed-width squarer circuits is presented in which LUT-based and conventional logic circuits are employed together to achieve the good trade-off between hardware complexity and performance. By exploiting the mathematical identities and hybrid architecture, the mean error and mean squarer error of the proposed squarer are reduced by up to 40%, compared with the best previous method presented in literature. Moreover, the proposed method can improve the speed and reduce the area of the squarer circuit. The implementation and chip measurement results in 0.18-µm CMOS technology are also presented and discussed.

  • SSM-HPC: Front View Gait Recognition Using Spherical Space Model with Human Point Clouds

    Jegoon RYU  Sei-ichiro KAMATA  Alireza AHRARY  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:7
      Page(s):
    1969-1978

    In this paper, we propose a novel gait recognition framework - Spherical Space Model with Human Point Clouds (SSM-HPC) to recognize front view of human gait. A new gait representation - Marching in Place (MIP) gait is also introduced which preserves the spatiotemporal characteristics of individual gait manner. In comparison with the previous studies on gait recognition which usually use human silhouette images from image sequences, this research applies three dimensional (3D) point clouds data of human body obtained from stereo camera. The proposed framework exhibits gait recognition rates superior to those of other gait recognition methods.

  • Amplify-and-Forward Relay Filter Design with MIMO System for Two-Way Relay Channels

    Jeehwan NOH  Chungyong LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2442-2445

    This letter considers a two-way relaying network where two nodes exchange their information based on the principle of physical layer network coding (PNC). We study the amplify-and-forward (AF) relay filter design with multiple-input multiple-output (MIMO) system. In order to maximize the sum-rate for information exchange, we propose a relay filter for two-way relaying network. Simulation results show that the proposed scheme performs better than the conventional schemes for two-way relay channel.

  • Asymptotic Performance Analysis of STBCs from Coordinate Interleaved Orthogonal Designs in Shadowed Rayleigh Fading Channels

    Chanho YOON  Hoojin LEE  Joonhyuk KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2501-2504

    In this letter, we provide an asymptotic error rate performance evaluation of space-time block codes from coordinate interleaved orthogonal designs (STBCs-CIODs), especially in shadowed Rayleigh fading channels. By evaluating a simplified probability density function (PDF) of Rayleigh and Rayleigh-lognormal channels affecting the STBC-CIOD system, we derive an accurate closed-form approximation for the tight upper and lower bounds on the symbol error rate (SER). We show that shadowing asymptotically affects coding gain only, and conclude that an increase in diversity order under shadowing causes slower convergence to asymptotic bound due to the relatively larger loss of coding gain. By comparing the derived formulas and Monte-Carlo simulations, we validate the accuracy of the theoretical results.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Training Convergence in Range-Based Cooperative Positioning with Stochastic Positional Knowledge

    Ziming HE  Yi MA  Rahim TAFAZOLLI  

     
    LETTER-Information Theory

      Vol:
    E95-A No:7
      Page(s):
    1200-1204

    This letter investigates the training convergence in range-based cooperative positioning with stochastic positional knowledge. Firstly, a closed-form of squared position-error bound (SPEB) is derived with error-free ranging. Using the derived closed-form, it is proved that the SPEB reaches its minimum when at least 2 out of N (> 2) agents send training sequences. Finally, numerical results are provided to elaborate the theoretical analysis with zero-mean Gaussian ranging errors.

  • Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline

    Min-Hua HO  Wei-Hong HSU  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1195-1202

    In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.

  • Security Condition for Exact Localization in Wireless Ad Hoc Networks

    Jin Seok KIM  Dae Hyun YUM  Sung Je HONG  Jong KIM  Pil Joong LEE  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2459-2462

    As deployment of wireless ad hoc networks for location-based services increases, accurate localization of mobile nodes is becoming more important. Localization of a mobile node is achieved by estimating its distances from a group of anchor nodes. If some anchors are malicious and colluding, localization accuracy cannot be guaranteed. In this article, we present the security conditions for exact localization in the presence of colluding malicious anchors. We first derive the minimum number of truthful anchors that are required for exact localization in 2-D Euclidean space where some anchors may be collinear. Second, we extend our security condition to 3-D localization where some anchors may be coplanar.

  • Nurse Scheduling by Cooperative GA with Effective Mutation Operator

    Makoto OHKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E95-D No:7
      Page(s):
    1830-1838

    In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.

  • Parallel Dual Modulus Prescaler with a Step Size of 0.5

    Hideyuki NAKAMIZO  Kenichi TAJIMA  Ryoji HAYASHI  Kenji KAWAKAMI  Toshiya UOZUMI  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1189-1194

    This paper shows a new pulse swallow programmable frequency divider with the division step size of 0.5. To realize the division step size of 0.5 by a conventional pulse swallow method, we propose a parallel dual modulus prescaler with the division ratio of P and P + 0.5. It consists of simple circuit elements and has an advantage over the conventional dual modulus prescaler with the division step size of 0.5 in high frequency operation. The proposed parallel dual modulus prescaler with the division ratio 8 and 8.5 is implemented in the 0.13-µm CMOS technology. The proposed architecture achieves 7 times higher frequency operation than the conventional one theoretically. It is verified the functions over 5 GHz.

  • A Simple and Effective Clustering Algorithm for Multispectral Images Using Space-Filling Curves

    Jian ZHANG  Sei-ichiro KAMATA  

     
    PAPER-Segmentation

      Vol:
    E95-D No:7
      Page(s):
    1749-1757

    With the wide usage of multispectral images, a fast efficient multidimensional clustering method becomes not only meaningful but also necessary. In general, to speed up the multidimensional images' analysis, a multidimensional feature vector should be transformed into a lower dimensional space. The Hilbert curve is a continuous one-to-one mapping from N-dimensional space to one-dimensional space, and can preserves neighborhood as much as possible. However, because the Hilbert curve is generated by a recurve division process, 'Boundary Effects' will happen, which means data that are close in N-dimensional space may not be close in one-dimensional Hilbert order. In this paper, a new efficient approach based on the space-filling curves is proposed for classifying multispectral satellite images. In order to remove 'Boundary Effects' of the Hilbert curve, multiple Hilbert curves, z curves, and the Pseudo-Hilbert curve are used jointly. The proposed method extracts category clusters from one-dimensional data without computing any distance in N-dimensional space. Furthermore, multispectral images can be analyzed hierarchically from coarse data distribution to fine data distribution in accordance with different application. The experimental results performed on LANDSAT data have demonstrated that the proposed method is efficient to manage the multispectral images and can be applied easily.

  • Speeding Up the Orthogonal Iteration Pose Estimation

    Junying XIA  Xiaoquan XU  Qi ZHANG  Jiulong XIONG  

     
    LETTER-3D Pose

      Vol:
    E95-D No:7
      Page(s):
    1827-1829

    Existing pose estimation algorithms suffer from either low performance or heavy computation cost. In this letter, we present an approach to improve the attractive algorithm called Orthogonal Iteration. A new form of fundamental equations is derived which reduces the computation cost significantly. And paraperspective camera model is used instead of weak perspective camera model during initialization which improves the stability. Experiment results validate the accuracy and stability of the proposed algorithm and show that its computational complexity is favorably compare to the O(n) non-iterative algorithm.

  • A Multi-Scale Structural Degradation Metric for Perceptual Evaluation of 3D Mesh Simplification

    Zhenfeng SHI  Xiamu NIU  Liyang YU  

     
    PAPER-Computer Graphics

      Vol:
    E95-D No:7
      Page(s):
    1989-2001

    Visual degradation is usually introduced during 3D mesh simplification. The main issue in mesh simplification is to maximize the simplification ratio while minimizing the visual degradation. Therefore, effective and objective evaluation of the visual degradation is essential in order to select the simplification ratio. Some objective geometric and subjective perceptual metrics have been proposed. However, few objective metrics have taken human visual characteristics into consideration. To evaluate the visual degradation introduced by mesh simplification for a 3D triangular object, we integrate the structural degradation with mesh saliency and propose a new objective and multi-scale evaluation metric named Global Perceptual Structural Degradation (GPSD). The proper selection of the simplification ratio under a given distance-to-viewpoint is also discussed in this paper. The accuracy and validity of the proposed metric have been demonstrated through subjective experiments. The experimental results confirm that the GPSD metric shows better 3D model-based multi-scale perceptual evaluation capability.

  • Congestion Avoid Movement Aware Routing Protocol in Interplanetary Backbone Networks

    Haoliang SUN  Xiaohui HU  Lixiang LIU  

     
    LETTER-Internet

      Vol:
    E95-B No:7
      Page(s):
    2467-2471

    The existing routing protocols for the interplanetary backbone network did not consider future link connection and link congestion. A novel routing protocol named CAMARP for the interplanetary backbone network is proposed in this letter. We use wait delay to consider future link connection and make the best next hop selection. A load balancing mechanism is used to avoid congestion. The proposed method leads to a better and more efficient distribution of traffic, and also leads to lower packet drop rates and higher throughput. CAMARP demonstrates good performance in the experiment.

  • Fast Focus Mechanism with Constant Magnification Using a Varifocal Lens and Its Application to Three-Dimensional Imaging

    Akira ISHII  Hiroaki YAMASHIRO  

     
    PAPER-3D Reconstruction

      Vol:
    E95-D No:7
      Page(s):
    1804-1810

    A differential pair of convergent and divergent lenses with adjustable lens spacing (“differential lens”) was devised as a varifocal lens and was successfully integrated into an object-space telecentric lens to build a focus mechanism with constant magnification. This integration was done by placing the front principal point of the varifocal lens at the rear focal point of the telecentric lens within a practical tolerance of positioning. Although the constant-magnification focus mechanism is a parallel projection system, a system for perfect perspective projection imaging without shifting the projection center during focusing could be built simply by properly setting this focus mechanism between an image-taking lens with image-space telecentricity and an image sensor. The focus resolution experimentally obtained was 0.92 µm (σ) for the parallel projection system with a depth range of 1.0 mm and this was 0.25 mm (σ) for the perspective projection system with a range from 120 to 350 mm within a desktop space. A marginal image resolution of 100 lp/mm was obtained with optical distortion of less than 0.2% in the parallel projection system. The differential lens could work up to 55 Hz for a sinusoidal change in lens spacing with a peak-to-valley amplitude of 425 µm when a tiny divergent lens that was plano-concave was translated by a piezoelectric positioner. Therefore, images that were entirely in focus were generated at a frame rate of 30 Hz for an object moving at a speed of around 150 mm/s in depth within the desk top space. Thus, three-dimensional (3-D) imaging that provided 3-D resolution based on fast focusing was accomplished in both microscopic and macroscopic spaces.

  • Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    Yanlei GU  Mehrdad PANAHPOUR TEHRANI  Tomohiro YENDO  Toshiaki FUJII  Masayuki TANIMOTO  

     
    PAPER-Recognition

      Vol:
    E95-D No:7
      Page(s):
    1775-1790

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

6561-6580hit(20498hit)