The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

11481-11500hit(20498hit)

  • Performance Analysis of MIMO Systems in Spatially Correlated Fading Using Matrix-Monotone Functions

    Eduard A. JORSWIECK  Holger BOCHE  

     
    PAPER-Information Theory

      Vol:
    E89-A No:5
      Page(s):
    1454-1472

    The average performance of a single-user MIMO system under spatially correlated fading and with different types of CSI at the transmitter and with perfect CSI at the receiver was studied in recent work. In contrast to analyzing a single performance metric, e.g. the average mutual information or the average bit error rate, we study an arbitrary representative of the class of matrix-monotone functions. Since the average mutual information as well as the average normalized MSE belong to that class, this universal class of performance functions brings together the information theoretic and signal processing performance metric. We use Lowner's representation of operator monotone functions in order to derive the optimum transmission strategies as well as to characterize the impact of correlation on the average performance. Many recent results derived for average mutual information generalize to arbitrary matrix-monotone performance functions, e.g. the optimal transmit strategy without CSI at the transmitter is equal power allocation. The average performance without CSI is a Schur-concave function with respect to transmit and receive correlation. In addition to this, we derive the optimal transmission strategy with long-term statistics knowledge at the transmitter and propose an efficient iterative algorithm. The beamforming-range is the SNR range in which only one data stream spatially multiplexed achieves the maximum average performance. This range is important since it has a simple receiver structure and well known channel coding. We entirely characterize the beamforming-range. Finally, we derive the generalized water-filling transmit strategy for perfect CSI and characterize its properties under channel correlation.

  • 2-D Laplace-Z Transformation

    Yang XIAO  Moon Ho LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:5
      Page(s):
    1500-1504

    Based on recent results for 2-D continuous-discrete systems, this paper develops 2-D Laplace-z transform, which can be used to analyze 2-D continuous-discrete signals and system in Laplace-z hybrid domain. Current 1-D Laplace transformation and z transform can be combined into the new 2-D s-z transform. However, 2-D s-z transformation is not a simple extension of 1-D transform, in 2-D case, we need consider the 2-D boundary conditions which don't occur in 1-D case. The hybrid 2-D definitions and theorems are given in the paper. To verify the results of this paper, we also derived a numerical inverse 2-D Laplace-z transform, applying it to show the 2-D pulse response of a stable 2-D continuous-discrete system.

  • Maximum-Cover Source-Location Problems

    Kenya SUGIHARA  Hiro ITO  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1370-1377

    Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.

  • Construction of Classifiers by Iterative Compositions of Features with Partial Knowledge

    Kazuya HARAGUCHI  Toshihide IBARAKI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1284-1291

    We consider the classification problem to construct a classifier c:{0,1}n{0,1} from a given set of examples (training set), which (approximately) realizes the hidden oracle y:{0,1}n{0,1} describing the phenomenon under consideration. For this problem, a number of approaches are already known in computational learning theory; e.g., decision trees, support vector machines (SVM), and iteratively composed features (ICF). The last one, ICF, was proposed in our previous work (Haraguchi et al., (2004)). A feature, composed of a nonempty subset S of other features (including the original data attributes), is a Boolean function fS:{0,1}S{0,1} and is constructed according to the proposed rule. The ICF algorithm iterates generation and selection processes of features, and finally adopts one of the generated features as the classifier, where the generation process may be considered as embodying the idea of boosting, since new features are generated from the available features. In this paper, we generalize a feature to an extended Boolean function fS:{0,1,*}S{0,1,*} to allow partial knowledge, where * denotes the state of uncertainty. We then propose the algorithm ICF* to generate such generalized features. The selection process of ICF* is also different from that of ICF, in that features are selected so as to cover the entire training set. Our computational experiments indicate that ICF* is better than ICF in terms of both classification performance and computation time. Also, it is competitive with other representative learning algorithms such as decision trees and SVM.

  • 2-D Iteratively Reweighted Least Squares Lattice Algorithm and Its Application to Defect Detection in Textured Images

    Ruen MEYLAN  Cenker ODEN  Ayn ERTUZUN  Aytul ERÇL  

     
    PAPER-Image

      Vol:
    E89-A No:5
      Page(s):
    1484-1494

    In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derived which combines 2-D robust regression concepts with the 2-D recursive least squares lattice algorithm. With this approach, whatever the probability distribution of the prediction error may be, small weights are assigned to the outliers so that the least squares algorithm will be less sensitive to the outliers. Implementation of the proposed iteratively reweighted least squares lattice algorithm to the problem of defect detection in textured images is then considered. The performance evaluation, in terms of defect detection rate, demonstrates the importance of the proposed algorithm in reducing the effect of the outliers that generally correspond to false alarms in classification of textures as defective or nondefective.

  • A Provably Secure Refreshable Partially Anonymous Token and Its Applications

    Rie SHIGETOMI  Akira OTSUKA  Jun FURUKAWA  Keith MARTIN  Hideki IMAI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1396-1406

    The first refreshable anonymous token scheme proposed in [1] enables one to provide services in such a way that each of its users is allowed to enjoy only a fixed number of services at the same time. In this paper, we show that the scheme in [1] is insecure and propose a provably secure refreshable partial anonymous token scheme which is a generalization of the previous scheme. The new scheme has an additional ability to control the anonymity level of users. We also propose a formal model and security requirements of the new scheme.

  • A Steepest Descent Algorithm for M-Convex Functions on Jump Systems

    Kazuo MUROTA  Ken'ichiro TANAKA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1160-1165

    The concept of M-convex functions has recently been generalized for functions defined on constant-parity jump systems. The b-matching problem and its generalization provide canonical examples of M-convex functions on jump systems. In this paper, we propose a steepest descent algorithm for minimizing an M-convex function on a constant-parity jump system.

  • Framework for Personalized User Interface by Sharing User-Centric Context between Real and Virtual Environments

    Seiie JANG  Woontack WOO  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:5
      Page(s):
    1694-1701

    In this paper, we propose a framework that provides users with personalized interfaces by sharing user-centric context between real and virtual environments. The proposed framework consists of ubi-UCAM for generating user's contexts, NAVER for managing virtual environment, and rv-Interface for linking ubi-UCAM with NAVER. Firstly, personalized interface helps users to concentrate on their tasks of interest by reducing burdensome menu selections according to user's context. In addition, user-adaptive contents based on user's preferences allow more pleasure personal experiences. Finally, personalized interface with context hand-over mechanism enables users to continuously interact with virtual environments, even if the users move around. According to experimental results, we expect that the proposed framework can play an important role for realizing user-centric VR applications by exploiting personalized interface that adapts to user-centric context.

  • A Localization Scheme for Sensor Networks Based on Wireless Communication with Anchor Groups

    Hiroyuki OCHI  Shigeaki TAGASHIRA  Satoshi FUJITA  

     
    PAPER

      Vol:
    E89-D No:5
      Page(s):
    1614-1621

    In this paper, we propose a new localization scheme for wireless sensor networks consisting of a huge number of sensor nodes equipped with simple wireless communication devices such as wireless LAN and Bluetooth. The proposed scheme is based on the Point-In-Triangle (PIT) test proposed by He et al. The scheme is actually implemented by using Bluetooth devices of Class 2 standard, and the performance of the scheme is evaluated in an actual environment. The result of experiments indicates that the proposed scheme could realize a localization with an error of less than 2 m.

  • A Relevance Feedback Image Retrieval Scheme Using Multi-Instance and Pseudo Image Concepts

    Feng-Cheng CHANG  Hsueh-Ming HANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E89-D No:5
      Page(s):
    1720-1731

    Content-based image search has long been considered a difficult task. Making correct conjectures on the user intention (perception) based on the query images is a critical step in the content-based search. One key concept in this paper is how we find the user preferred low-level image characteristics from the multiple positive samples provided by the user. The second key concept is how we generate a set of consistent "pseudo images" when the user does not provide a sufficient number of samples. The notion of image feature stability is thus introduced. The third key concept is how we use negative images as pruning criterion. In realizing the preceding concepts, an image search scheme is developed using the weighted low-level image features. At the end, quantitative simulation results are used to show the effectiveness of these concepts.

  • Performance Improvement for IEEE 802.11 Distributed Coordination Function (DCF)

    Kiyoshi TAKAHASHI  Toshinori TSUBOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1605-1612

    The medium access control (MAC) protocol is the main determiner of the system throughput in Wireless Local Area Networks (WLANs). The MAC technique of the IEEE 802.11 protocol is called Distributed Coordination Function (DCF). DCF is based on a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. Each station generates a random backoff interval before transmitting a packet to minimize the probability of collision with packets being transmitted by other stations. However, when the number of stations increases, the system throughput decreases. This paper proposes a new backoff algorithm that uses finish tags. The proposed algorithm uses the finish tag of each station to control the backoff intervals so as to improve system throughput. The finish tag is updated when a packet reaches the front of its flow, and it is attached to the packet just prior to transmission. When a station receives packets with older finish tags, its backoff time interval is increased. For this reason, the more the stations there are, the larger the backoff time becomes. Simulations confirm that the proposal improves system throughput of a IEEE 802.11 network under saturation conditions.

  • Modal-Expansion Analysis of Electromagnetically Coupled Coaxial Dipole Antennas

    Zhongxiang SHEN  Quanxin WANG  Ke-Li WU  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1654-1661

    This paper presents a modal-expansion analysis of the electromagnetically coupled coaxial dipole antenna. The analysis of the antenna problem is initially simplified using the even-odd mode excitation and then the resultant half structure is divided into two parts; one is the characterization of a coaxial feeding network and the other is the modeling of a sleeve monopole antenna driven by a coaxial line. The formally exact modal-expansion method is employed to analyze both parts. The analysis of the sleeve monopole antenna is facilitated by introducing a perfectly conducting boundary at a distance from the monopole's top end. The current distribution and input impedance of the electromagnetically coupled coaxial dipole antenna are obtained by finding expansion coefficients through enforcing the continuity of tangential field components across regional interfaces and cascading the two parts together. Numerical results for the coaxial dipole antenna's radiation characteristics are presented and discussed.

  • Control Performance of Discrete-Time Fuzzy Systems Improved by Neural Networks

    Chien-Hsing SU  Cheng-Sea HUANG  Kuang-Yow LIAN  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:5
      Page(s):
    1446-1453

    A new control scheme is proposed to improve the system performance for discrete-time fuzzy systems by tuning control grade functions using neural networks. According to a systematic method of constructing the exact Takagi-Sugeno (T-S) fuzzy model, the system uncertainty is considered to affect the membership functions. Then, the grade functions, resulting from the membership functions of the control rules, are tuned by a back-propagation network. On the other hand, the feedback gains of the control rules are determined by solving a set of LMIs which satisfy sufficient conditions of the closed-loop stability. As a result, both stability guarantee and better performance are concluded. The scheme applied to a truck-trailer system is verified by satisfactory simulation results.

  • An Energy Efficient Ranking Protocol for Radio Networks

    Koji NAKANO  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1346-1354

    A radio network (RN for short) is a distributed system with no central arbiter, consisting of n radio transceivers, henceforth referred to as stations. We assume that the stations run on batteries and expends power while broadcasting/receiving a data packet. Thus, the most important measure to evaluate protocols on the radio network is the number of awake time slots, in which a station is broadcasting/receiving a data packet. We also assume that the stations are identical and have no unique ID number, and no station knows the number n of the stations. For given n keys one for each station, the ranking problem asks each station to determine the number of keys in the RN smaller than its own key. The main contribution of this paper is to present an optimal randomized ranking protocol on the k-channel RN. Our protocol solves the ranking problem, with high probability, in O(+log n) time slots with every station being awake for at most O(log n) time slots. We also prove that any randomized ranking protocol is required to run in expected Ω(+log n) time slots with at least one station being awake for expected Ω(log n) time slots. Therefore, our ranking protocol is optimal.

  • Ultrathin HfOxNy Gate Insulator Formation by Electron Cyclotron Resonance Ar/N2 Plasma Nitridation of HfO2 Thin Films

    Shun-ichiro OHMI  Tomoki KUROSE  Masaki SATOH  

     
    PAPER-Si Devices and Processes

      Vol:
    E89-C No:5
      Page(s):
    596-601

    HfOxNy thin films formed by the electron cyclotron resonance (ECR) Ar/N2 plasma nitridation of HfO2 films were investigated for high-k gate insulator applications. HfOxNy thin films formed by the ECR Ar/N2 plasma nitridation (60 s) of 1.5-nm-thick HfO2 films, which were deposited on chemically oxidized Si(100) substrates, were found to be effective for suppressing interfacial layer growth or crystallization during postdeposition annealing (PDA) in N2 ambient. After 900 PDA of for 5 min in N2 ambient, it was found that HfSiON film with a relatively high dielectric constant was formed on the HfOxNy/Si interface by Si diffusion. An equivalent oxide thickness (EOT) of 2.0 nm and a leakage current density of 1.010-3 A/cm2 (at VFB-1 V) were obtained. The effective mobility of the fabricated p-channel metal-insulator-semiconductor field-effect transistor (MISFET) with the HfOxNy gate insulator was 50 cm2/Vs, and the gate leakage current of the MISFET with the HfOxNy gate insulator was found to be well suppressed compared with the MISFET with the HfO2 gate insulator after 900 PDA because of the nitridation of HfO2.

  • A Coaxial Line to Post-Wall Waveguide Transition for a Cost-Effective Transformer between a RF-Device and a Planar Slot-Array Antenna in 60-GHz Band Open Access

    Takafumi KAI  Yusuke KATOU  Jiro HIROKAWA  Makoto ANDO  Hiroshi NAKANO  Yasutake HIRACHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1646-1653

    Interfaces between a coaxial structure and a post-wall waveguide are proposed as the essential components for cost-effective millimeter-wave modules. PTFE substrate is selected in terms of loss and manufacturability. The reflection and the transmission characteristics are investigated. The short-stepped and the short-taper-stepped feeding structures provide 14.7% and 13.2% bandwidths for the reflection smaller than -15 dB, respectively. The 4640 mm2 size antenna fed by the short-stepped structure in PTFE substrate gives 27.3 dBi with 58.2% efficiency at 60.0 GHz. Feeding structures in PTFE substrate fulfill electrical and manufacturing demands in millimeter-wave bands.

  • Split Multi-Path Routing Protocol with Load Balancing Policy (SMR-LB) to Improve TCP Performance in Mobile Ad Hoc Networks

    Takeshi MURAKAMI  Masaki BANDAI  Iwao SASASE  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:5
      Page(s):
    1517-1525

    In this paper, we propose Split Multi-path Routing protocol with Load Balancing policy (SMR-LB) to improve TCP performance in mobile ad hoc networks. In SMR-LB, each intermediate node records how many primary paths are attempted to construct as well as which source nodes attempt to construct the primary path. Each intermediate node decides which primary path should be constructed by using the primary path and the source node ID information. As a result, SMR-LB can balance the loads and so reduce the probability of congestion and avoid the continuous link breakage time between the specific source and destination pair. Computer simulation results show that SMR-LB can improve TCP performance compared with the conventional protocols.

  • Constant Modulus Based Blind Channel Estimation for OFDM Systems

    Zhigang CHEN  Taiyi ZHANG  Yatong ZHOU  Feng LIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1705-1708

    A novel blind channel estimation scheme is proposed for OFDM systems employing PSK modulation. This scheme minimizes the number of possible channels by exploiting the constant modulus property, chooses a best fit over the possible channels by exploiting the finite alphabet property of information signals, and achieves competitive performance with low computational complexity. Results comparing the new scheme with the finite-alphabet based channel estimation are presented.

  • A Probe-Fed U-Shaped Cross-Sectional Antenna with Tuning Stubs on a U-Shaped Ground Plane

    Duang-arthit SRIMOON  Chuwong PHONGCHAROENPANICH  Monai KRAIRIKSH  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1636-1645

    A probe-fed U-shaped cross-sectional antenna with tuning stubs on a U-shaped ground plane is proposed for wideband applications. The bottom of the antenna is etched to form tuning stubs for impedance matching. The simulated results of return loss, co- and cross-polarized patterns are presented and compared with the measured ones. Characteristics of a constructed antenna prototype at the operating frequency show that the antenna has an impedance bandwidth (2:1 VSWR) of 37.44% and average gain level of 8.5 dBi. Good radiation characteristics of the proposed antenna have been obtained that is the cross-polarization level and front-to-back ratio in both E- and H-planes across the large bandwidth are better than 22 dB and 12 dB, respectively.

  • On Reconfiguring Radial Trees

    Yoshiyuki KUSAKARI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1207-1214

    A linkage is a collection of line segments, called bars, possibly joined at their ends, called joints. We consider flattening a tree-like linkage, that is, a continuous motion of their bars from an initial configuration to a final configuration looking like a"straight line segment," preserving the length of each bar and not crossing any two bars. In this paper, we introduce a new class of linkages, called "radial trees," and show that there exists a radial tree which cannot be flattened.

11481-11500hit(20498hit)