The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BISR(2hit)

1-2hit
  • Reduction of Area per Good Die for SoC Memory Built-In Self-Test

    Masayuki ARAI  Tatsuro ENDO  Kazuhiko IWASAKI  Michinobu NAKAO  Iwao SUZUKI  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E93-A No:12
      Page(s):
    2463-2471

    To reduce the manufacturing cost of SoCs with many embedded SRAMs, we propose a scheme to reduce the area per good die for the SoC memory built-in self-test (MBIST). We first propose BIST hardware overhead reduction by application of an encoder-based comparator. For the repair of a faulty SRAM module with 2-D redundancy, we propose spare assignement algorithm. Based on an existing range-cheking-first algorithm (RCFA), we propose assign-all-row-RCFA (A-RCFA) which assign unused spare rows to faulty ones, in order to suppress the degradation of repair rate due to compressed fail location information output from the encoder-based comparator. Then, considering that an SoC has many SRAM modules, we propose a heuristic algorithm based on iterative improvement algorithm (IIA), which determines whether each SRAM should have a spare row or not, in order to minimize area per a good die. Experimental results on practical scale benchmark SoCs with more than 1,000 SRAM modules indicate that encoder-based comparators reduce hardware overhead by about 50% compared to traditional ones, and that combining the IIA-based algorithm for determining redundancy architecture with the encoder-based comparator effectively reduces the area per good die.

  • Accomplishment of At-Speed BISR for Embedded DRAMs

    Yoshihiro NAGURA  Yoshinori FUJIWARA  Katsuya FURUE  Ryuji OHMURA  Tatsunori KOMOIKE  Takenori OKITAKA  Tetsushi TANIZAKI  Katsumi DOSAKA  Kazutami ARIMOTO  Yukiyoshi KODA  Tetsuo TADA  

     
    PAPER-BIST

      Vol:
    E85-D No:10
      Page(s):
    1498-1505

    The increase of test time of embedded DRAMs (e-DRAM) is one of the key issues of System-on-chip (SOC) device test. This paper proposes to put the repair analysis function on chip as Built In Self Repair (BISR). BISR is performed at 166 MHz as at-speed of e-DRAM with using low cost automatic test equipment (ATE). The area of the BISR is 1.7 mm2. Using error storage table form contributes to realize small area penalty of repair analysis function. e-DRAM function test time by BISR was about 20% less than the conventional method at wafer level testing. Moreover, representative samples are produced to confirm repair analysis ability. The results show that all of the samples are actually repaired by repair information generated by BISR.