The search functionality is under construction.

Keyword Search Result

[Keyword] EDFA(20hit)

1-20hit
  • Improved Optical Amplification Efficiency by Using Turbo Cladding Pumping Scheme for Multicore Fiber Optical Networks Open Access

    Hitoshi TAKESHITA  Keiichi MATSUMOTO  Hiroshi HASEGAWA  Ken-ichi SATO  Emmanuel Le Taillandier de GABORY  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/01/24
      Vol:
    E102-B No:8
      Page(s):
    1579-1589

    We realize a multicore erbium-doped fiber amplifier (MC-EDFA) with 2dB optical gain improvement (average) by recycling the residual 0.98μm pump light from the MC-EDF output. Eight-channel per core wavelength division multiplexed (WDM) Nyquist PM-16QAM optical signal amplification is demonstrated over a 40-minute period. Furthermore, we demonstrate the proposed MC-EDFA's stability by using it to amplify a Nyquist PM-16QAM signal and evaluating the resulting Q-factor variation. We found that our scheme contributes to reducing the total power consumption of MC-EDFAs in spatial division multiplexing (SDM)/WDM networks by up to 33.5%.

  • New Burst-Mode Erbium-Doped Fiber Amplifier with Wide Linearity and High Output Power for Uplink Analog Radio-over-Fiber Signal Transmission

    Masaki SHIRAIWA  Yoshinari AWAJI  Naoya WADA  Atsushi KANNO  Toshiaki KURI  Pham TIEN DAT  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    832-839

    We report the adaptability of the burst-mode erbium-doped fiber amplifier (BM-EDFA) for uplink transmission of sharply rising analog radio-over-fiber (RoF) signals by using long-term evolution (LTE) -Advanced format on a mobile front-haul. Recent drastically increased mobile data traffic is boosting the demand for high-speed radio communication technologies for next-generation mobile services to enhance user experience. However, the latency become increasingly visible as serious issues. Analog RoF technology is a promising candidate for a next generation mobile front-haul to realize low latency. For the uplink, an RoF signal may rise sharply in response to a burst of in-coming radio signals. We propose that a newly developed BM-EDFA is applied for such a sharply rising RoF signal transmission. The BM-EDFA that we designed using enhanced intrinsic saturation power EDF to suppress the gain transient caused by received optical power fluctuations with optical feedback. The new BM-EDFA was designed for a wider linear output power range and lower NF than the previous BM-EDFA. The observed range of received optical power satisfying an error vector magnitude of less than 8%rms achieved over 16dB. We consider that our BM-EDFAs with wide linear ranges of output power will be a key device for the LTE-Advanced RoF uplink signal transmission via optical access networks for the next-generation mobile front-haul.

  • Performance of Uplink Packetized LTE-A Signal Transmission on a Cascaded Radio-on-Radio and Radio-over-Fiber System

    Pham TIEN DAT  Atsushi KANNO  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    840-848

    In this paper, we propose a flexible and high-capacity front-haul link for the uplink transmission of high-speed mobile signals using a cascade of radio-on-radio (RoR) and radio-over-fiber (RoF) systems. To emulate the cases that may occur in the uplink direction, we experimentally investigate the performance of superposing an uplink bursty LTE-A signal on the cascaded system using optical packet signal transmission. The performance of systems using different types of erbium-doped fiber amplifiers (EDFAs), including a high-transient EDFA, an automatic-gain-control EDFA, and a burst-mode (BM) EDFA is evaluated and compared. We confirm that the dynamic transience of the EDFAs has a significant influence on the signal performance. By using a BM-EDFA, we confirm successful transmission of the uplink packetized LTE-A signal on the cascaded system. Both the measured error vector magnitude and the received optical power range metrics exceed the requirements. We also estimate the maximum transmission range of the RoR link, and it is confirmed that a sufficiently long range could be achieved for the applications in mobile front-haul networks.

  • Multicore EDFA for Space Division Multiplexing Open Access

    Yukihiro TSUCHIDA  Koichi MAEDA  Ryuichi SUGIZAKI  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1265-1271

    We propose multi-core erbium-doped fiber amplifiers for next-generation optical amplifiers utilized by space-division multiplexing technologies. Multi-core erbium-doped fiber amplifiers were studied widely as a means for overcoming exponential growth of internet traffic in the backbone network. We consider two approaches to excitation of erbium irons; One is core-pumping scheme, the other is cladding-pumping scheme. For a core-pumping configuration, we evaluate its applicability to future ultra long-haul network. In addition, we demonstrate that cladding-pumping configuration will enable reduction of power consumption, size, and cost because one multimode pumping laser diode can excite several cores simultaneously embedded in a common cladding and amplify several signals passed through the multi-core erbium-doped fiber cores.

  • Investigating the Performance of a Transient-Suppressed EDFA in Optical Packet and Burst-Switched Networks

    Ben PUTTNAM  Yoshinari AWAJI  Naoya WADA  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1853-1859

    We describe a series of system measurements investigating the performance of a burst-mode or transient-suppressed (TS)-EDFA, specifically designed to reduce the impact of gain transients in dynamic optical networks. We assess the performance of this TS-EDFA in a variety of network contexts. We compare the performance of the TS-EDFA with conventional amplifiers (C-EDFAs) and show its compatibility with supplementary gain control techniques. Finally, we measure gain-transient accumulation along long links using a recirculating transmission loop and show that, for packet-transmission, the number of hops is limited by accumulated transients for a C-EDFA, but limited by accumulated noise for the TS-EDFA.

  • Novel Gain-Slope Free Erbium-Doped Fiber Amplifier for L-Band Using Thulium-Doped Fiber

    Tomoharu KITABAYASHI  Tetsuya SAKAI  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    940-944

    In modern high-capacity wavelength division multiplexing (WDM) transmission systems, there is increasing demand for large transmission capacity. To achieve this purpose, an L-band (1565-1625 nm) erbium-doped fiber amplifier (EDFA) is very effective method because the conventional silica-based EDF can be used. In EDFAs that used in WDM transmission systems, the gain flatness of EDFA is very important. A passive gain equalizer flattens the gain profile of EDFA. But the gain flatness in L-band deteriorates due to dynamic gain-tilt (DGT) and temperature gain-tilt (TGT) when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we propose an active gain-slope compensation technique for the L-band EDFA using a thulium-doped fiber (TDF). The EDFA actively gain-slope compensated by the TDF compensator keeps the gain profile constant for the wide input power range of more than 8 dB, a wide temperature range of 65 without gain-tilt in a wavelength band between 1575 nm and 1610 nm. Furthermore, the EDFA keeps a low noise figure of less than 7.5 dB.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    605-609

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1231-1235

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • Highly Reliable and High Power 980 nm Pump Laser Diode Module for Undersea Cable Systems

    Masashi USAMI  Yuichi MATSUSHIMA  Hideyoshi HORIE  Hideaki KANEDA  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1265-1273

    Highly reliable and high power weakly index guided buried-stripe type 980 nm pump laser diodes developed for undersea applications are reviewed. The 10,000-hour large scale reliability tests of the first generation LD chips shows that 16.7 FIT for the random failure was confirmed at 10C with 60% confidence level at 120 mW output power. We also fabricated a FBG locked co-axial type module using a can-sealed LD with a two-lens system, which showed a stable FBG locked mode oscillation at 980 nm under the temperature range from 5C to 45C. The 5,000-hour heat cycle test of the modules reveals that the cumulative failure rate after 27 years at 10C is expected to be 0.023%. These first generation LD modules were employed in the transoceanic commercial systems such as Pacific Crossing-1 and the Japan-US cable system projects. We have also succeeded in developing the 980 nm LD for higher output operation with optimizing waveguide design. The 1000 µm long LD showed CW kink-free operation up to 545 mW optical output and a maximum output power of over 650 mW, which was limited by thermal rollover. In addition, a preliminary aging test at 350 mW optical output power at 50C has shown stable operation up to 2,300 h. We also confirmed 300 mW kink-free fiber output power with a co-axial type module with the improved coupling efficiency of approximately 78%. These figures are the highest reported operation levels for 980-nm co-axial type modules.

  • Highly Reliable and High Power 980 nm Pump Laser Diode Module for Undersea Cable Systems

    Masashi USAMI  Yuichi MATSUSHIMA  Hideyoshi HORIE  Hideaki KANEDA  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    639-647

    Highly reliable and high power weakly index guided buried-stripe type 980 nm pump laser diodes developed for undersea applications are reviewed. The 10,000-hour large scale reliability tests of the first generation LD chips shows that 16.7 FIT for the random failure was confirmed at 10C with 60% confidence level at 120 mW output power. We also fabricated a FBG locked co-axial type module using a can-sealed LD with a two-lens system, which showed a stable FBG locked mode oscillation at 980 nm under the temperature range from 5C to 45C. The 5,000-hour heat cycle test of the modules reveals that the cumulative failure rate after 27 years at 10C is expected to be 0.023%. These first generation LD modules were employed in the transoceanic commercial systems such as Pacific Crossing-1 and the Japan-US cable system projects. We have also succeeded in developing the 980 nm LD for higher output operation with optimizing waveguide design. The 1000 µm long LD showed CW kink-free operation up to 545 mW optical output and a maximum output power of over 650 mW, which was limited by thermal rollover. In addition, a preliminary aging test at 350 mW optical output power at 50C has shown stable operation up to 2,300 h. We also confirmed 300 mW kink-free fiber output power with a co-axial type module with the improved coupling efficiency of approximately 78%. These figures are the highest reported operation levels for 980-nm co-axial type modules.

  • Pre- and Post-Dispersion Compensation in Long-Haul WDM Transmission System

    Takao NAITO  Takafumi TERAHARA  Naomasa SHIMOJOH  Takashi YORITA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:7
      Page(s):
    1409-1416

    In long-haul wavelength-division-multiplexed (WDM) transmission systems, signals with shorter and longer wavelengths have self-phase modulation group-velocity-dispersion (SPM-GVD) penalty caused by to the dispersion slope even after the dispersion-compensation at the receiver has been optimized. As a countermeasure, we have already proposed both pre-compensation and post-compensation of chromatic dispersion at the transmitter and receiver for each channel. This method can decrease the channel variation of path-averaged chromatic dispersion along the transmission line, and it can improve the eye opening of the waveform after transmission. We investigated the optimized parameter of chromatic dispersion and chirping at the transmitter. The optimized pre-dispersion compensation parameter R was about 50%. The optimized chirping parameter α was about 3 when the signal wavelength was less than the mean zero-dispersion wavelength. In a single-channel, 5.3-Gbit/s NRZ signal transmission experiment over a 4,760-km straight line, this method decreased SPM-GVD penalty. In a 32-channel, 5.3-Gbit/s WDM transmission experiment over 9,879 km using a circulating loop, this method improved Q-factors for the 1st and 32nd channels by more than 1.5 dB.

  • High Alumina Co-Doped Silica EDFA and Its Gain-Equalization in Long-Haul WDM Transmission System

    Takao NAITO  Naomasa SHIMOJOH  Takafumi TERAHARA  Toshiki TANAKA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:4
      Page(s):
    775-781

    In an optical submarine cable transmission system, small size, low consumption power, and high reliability are required for inline repeaters. The structure of the inline repeater should be a simple single stage. The design of erbium doped fiber (EDF) itself is very important for the inline repeater to achieve broad bandwidth, high output power, and low noise figure. We designed and developed high alumina co-doped erbium doped fiber amplifiers (EDFAs) for long-haul, high-capacity WDM transmission systems. We investigated the trade-off relationship between the gain flatness and the output power to optimize the EDF length. We obtained high performance, including a slightly sloped gain flatness of +0.04 dB/nm at 1550 nm, a superior noise figure of 4.7 dB, and a relatively large output power of +11.5 dBm for an EDF length of 5 m using a 1480-nm pumping laser diode. We applied gain-equalizers (GEQs) using Mach-Zehnder type filters with different FSRs to accurately compensate for the EDFAs ' gain-wavelength characteristics. The main GEQs have free-spectral-ranges (FSRs) of 48-nm, which are about 2 times as long as the wavelength difference between a 1558-nm EDFA gain peak and a 1536-nm EDFA gain valley. Using a circulating loop with the above EDFAs and GEQs, we performed the broad wavelength bandwidth. The achieved signal wavelength bandwidth after 5,958-km transmission was 20 nm. We successfully transmitted 700-Gbit/s (66 10.66-Gbit/s) WDM signals over 2,212 km. The combination of high alumina co-doped silica EDFA and large FSR GEQ is attractive for long-haul, high-capacity WDM transmission systems.

  • Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum

    Jaedeuk LEE  Hugh SONG  Kyunghwan OH  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1273-1282

    Coaxial-core erbium-doped fiber amplifiers (EDFA's) having a property of self-regulated gain spectrum are developed. The operation of a coaxial-core EDFA is based on the partial separation of the light paths for different wavelength channels in the directionally-coupled waveguides of a coaxial-core geometry. The degree of channel equalization depends on the geometrical and optical parameters of the coaxial-core EDFA and on relative channel power levels. A numerical analysis based on the coupled-mode theory and on the rate equation shows that, under fully optimized conditions, a coaxial-core EDFA provides equalization rates in excess of -0.4 dB per dB of input-power imbalance in the case with two WDM channels. A cascade experiment demonstrates the effect of coaxial-core EDFA's toward channel-power equalization in fiber links with a small number of WDM channels.

  • Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum

    Jaedeuk LEE  Hugh SONG  Kyunghwan OH  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1539-1548

    Coaxial-core erbium-doped fiber amplifiers (EDFA's) having a property of self-regulated gain spectrum are developed. The operation of a coaxial-core EDFA is based on the partial separation of the light paths for different wavelength channels in the directionally-coupled waveguides of a coaxial-core geometry. The degree of channel equalization depends on the geometrical and optical parameters of the coaxial-core EDFA and on relative channel power levels. A numerical analysis based on the coupled-mode theory and on the rate equation shows that, under fully optimized conditions, a coaxial-core EDFA provides equalization rates in excess of -0.4 dB per dB of input-power imbalance in the case with two WDM channels. A cascade experiment demonstrates the effect of coaxial-core EDFA's toward channel-power equalization in fiber links with a small number of WDM channels.

  • Gain-Flattened Hybrid Silica-Based Er-Doped Fiber Amplifiers Designed for More Than 25 nm Optical Bandwidth

    Motoki KAKUI  Tomonori KASHIWADA  Masayuki SHIGEMATSU  Masashi ONISHI  Masayuki NISHIMURA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1285-1292

    Wavelength-division multiplexing (WDM) transmission systems have been intensely researched in order to increase the transmission capacity. One of the most important key devices for this use is erbium-doped fiber amplifiers (EDFAs) which feature a flattened gain, a high pumping efficiency and a low noise figure (NF), simultaneously. To fulfill these requirements, hybrid silica-based EDFAs (EDSFAs) composed of Al codoped and P/Al codoped EDSFs have been proposed so far. They are also attractive from the viewpoint of productivity, reliability, and cost-effectiveness. On the other hand, the optical bandwidth has been around 15 nm at most. In this paper, we have proposed newly designed hybrid EDSFAs for more than 25 nm optical bandwidth. The gain peak around 1. 53 µm can be suppressed through the saturation degree control in both EDSFs. The remaining obstacle is the diparound 1. 54 µm, which results in the relative gain non-uniformity of 10. 7% over the wavelength range from 1535 to 1560 nm. Owing to the glass composition optimization, the relative gain non-uniformity has been reduced to 5.8% without gain equalizers(GEQs), which is comparable to that of EDFFAs. As another solution, the hybrid EDSFA including two-stage Fabry Perot etalons as the GEQ has been proposed. In this configuration, the hybrid EDSFA has been designed to exhibit the gain profile similar to the summation of two sinusoidal curves, and the relative gain non-uniformity has been reduced to 3. 7%, which is almost equal to that of the hybrid EDFAs composed of EDSF and EDFF. Moreover, it has been demonstrated that newly developed hybrid EDSFAs exhibit a higher pumping efficiency and a lower NF than EDFFAs and hybrid EDSF/EDFFAs.

  • Pulsed Lightwave Frequency Synthesizer System Using an EDFA and AOD in a Fiber Loop

    Kazuo AIDA  Kiyoshi NAKAGAWA  

     
    PAPER

      Vol:
    E78-B No:5
      Page(s):
    664-673

    We report here a pulsed lightwave frequency synthesizer system that is composed of a pulsed lightwave sweep frequency generator and a tracking generator. The key advance in the sweep generator is the use of a dynamically gain controlled EDFA. The combination of feedback and feed forward dynamic gain control effectively compensates EDFA gain fluctuation and equalizes fiber loop loss so that the initial pulse wave form and amplitude is retained in the loop at large circuit numbers. Over 1000 pulsed lightwave frequencies are synthesized in 250MHz steps by the sweep generator. Almost flat response (0.55dB variation) is realized up to 240GHz. The power spectrum decreases by 67% (1.7dB down) at 250GHz. The peak level of the pulses output from the loop is about -4dBm. Tracking generator and total synthesizer system performance are evaluated by (a) beat frequency between the tracking generator and the master lightwave source, (b) beat frequency between two tracking generators, and (c) a frequency chain between the master lightwave source and another HCN stabilized lightwave source via the synthesizer system. A continuous lightwave frequency locked to a frequency selected from the pulsed sweep frequency signal is demonstrated at over 200GHz to have an instability of 5MHz. Absolute accuracy of the lightwave frequency emitted from the synthesizer system is about 10MHz. Therefore, the relative accuracy of the lightwave frequency is as high as 510-8.

  • Long-Distance Soliton Transmission up to 20 Gbit/s Using Alternating-Amplitude Solitons and Optical TDM

    Masatoshi SUZUKI  Noboru EDAGAWA  Hidenori TAGA  Hideaki TANAKA  Shu YAMAMOTO  Yukitoshi TAKAHASHI  Shigeyuki AKIBA  

     
    INVITED PAPER

      Vol:
    E78-C No:1
      Page(s):
    12-21

    Feasibility of 20 Gbit/s single channel transoceanic soliton transmission systems with a simple EDFA repeaters configuration has been studied. Both a simple and versatile soliton pulse generator and a polarization insensitive optical demultiplexer, which can provide a almost square shape optical gate with duration of full bit time period, have been proposed and demonstrated by using sinusoidally modulated electroabsorption modulators. The optical time-division multiplexing/demultiplexing scheme using the optical demultiplexer results in drastic improvement of bit error rate characteristics. We have experimentally confirmed that the use of alternating-amplitude solitons is an efficient way to mitigate not only soliton-soliton interaction but also Gordon-Haus timing jitter constraints in multi-ten Gbit/s soliton transmission. Timing jitter reduction using relatively wide band optical filter bas been investigated in 20 Gbit/s loop experiments and single-carrier, single-polarization 20 Gbit/s soliton data transmission over 11500 km with bit error rate of below 10-9 has been experimentally demonstrated, using the modulator-based soliton source, the optical demultiplexer, the alternation-amplitude solitons, and wide-band optical filters. Obtained 230 Tbit/skm transmission capacity shows the feasibility of 20 Gbit/s single channel soliton transoceanic systems using fully practical technologies.

  • Soliton Transmission Control for Ultra High Speed System

    Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    INVITED PAPER

      Vol:
    E78-C No:1
      Page(s):
    5-11

    Soliton transmission control has already proved to be an outstanding technique and enable a soliton to be transmit over one million kilometers. This technique is not only applicable to vast distances but also to shorter distances where the amplifier spacing is greater than that of conventional systems. A combination of time and frequency domain control eliminates the noise accumulation and timing jitter caused by soliton interaction and the Gordon-Haus effect, that are the main impediments to extending the transmission distance. In this paper we describe soliton control techniques applied over an astronomical transmission distance of 180,000,000 km, and to a terrestrial system with a large amplifier spacing of up to 100km. We also report the possibility of realizing a sub-tera bit/s soliton transmission system operating over more than 5,000 km in which the soliton self-frequency shift is controlled with the soliton control technique.

  • Suppression of Gain Bandwidth Narrowing in a 4 Channel WDM System Using Unsaturated EDFAs and a 1.53µm ASE Rejection Filter

    Masuo SUYAMA  Takahumi TERAHARA  Susumu KINOSHITA  Terumi CHIKAMA  Masaaki TAKAHASHI  

     
    PAPER

      Vol:
    E77-B No:4
      Page(s):
    449-453

    We describe 2.5Gb/s 4 channel WDM transmission over 1060km using 18 EDFAs. Gain bandwidth narrowing in concatenated EDFAs has been successfully suppressed using unsaturated EDFAs and a 1.53µm ASE rejection filter.

  • Ultrahigh Speed Optical Soliton Communication Using Erbium-Doped Fiber Amplifiers

    Eiichi YAMADA  Kazunori SUZUKI  Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    410-419

    Optical soliton transmissions at 10 and 20Gbit/s over 1000km with the use of erbium-doped fiber amplifiers are described in detail. For the 10Gbit/s experiment, a bit error rate (BER) of below 110-13 was obtained with 220-1 pseudorandom patterns and the power penalty was less than 0.1dB. In the 20Gbit/s experiment optical multiplexing and demultiplexing techniques were used and a BER of below 110-12 was obtained with 223-1 pseudorandom patterns under a penalty-free condition. A new technique for sending soliton pulses over ultralong distances is presented which incorporates synchronous shaping and retiming using a high speed optical modulator. Some experimental results over 1 million km at 7.210Gbit/s are described. This technique enables us to overcome the Gordon-Haus limit, the accumulation of amplified spontaneous emission (ASE), and the effect of interaction forces between adjacent solitons. It is also shown by computer runs and a simple analysis that a one hundred million km soliton transmission is possible by means of soliton transmission controls in the time and frequency domains. This means that limit-free transmission is possible.