The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FIRE(31hit)

1-20hit(31hit)

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • A Study on Optimal Design of Optical Devices Utilizing Coupled Mode Theory and Machine Learning

    Koji KUDO  Keita MORIMOTO  Akito IGUCHI  Yasuhide TSUJI  

     
    PAPER

      Pubricized:
    2020/03/25
      Vol:
    E103-C No:11
      Page(s):
    552-559

    We propose a new design approach to improve the computational efficiency of an optimal design of optical waveguide devices utilizing coupled mode theory (CMT) and a neural network (NN). Recently, the NN has begun to be used for efficient optimal design of optical devices. In this paper, the eigenmode analysis required in the CMT is skipped by using the NN, and optimization with an evolutionary algorithm can be efficiently carried out. To verify usefulness of our approach, optimal design examples of a wavelength insensitive 3dB coupler, a 1 : 2 power splitter, and a wavelength demultiplexer are shown and their transmission properties obtained by the CMT with the NN (NN-CMT) are verified by comparing with those calculated by a finite element beam propagation method (FE-BPM).

  • A PCB-Integratable Metal Cap Slot Antenna for 60-GHz Band Mobile Terminals Open Access

    Takashi TOMURA  Haruhisa HIRAYAMA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/08/13
      Vol:
    E102-B No:2
      Page(s):
    317-323

    A PCB-integratable metal cap slot antenna is developed for the 60-GHz band. The antenna is composed of two slots and a T-junction and is fed by a post-wall waveguide on a substrate. The dimensions of the designed antenna are 8.0×4.5×2.5mm3. The designed antenna is insensitive with a metal block behind the antenna. The designed antenna is fabricated by machining a brass block and evaluated by measurement. The measurement shows reflection less than -10.0dB, gain larger than 7.8dBi and beamwidth between 54°-65° over the 60-GHz band with endfire radiation. The antenna showed high gain together with short length of half wavelength in the radiation direction. This antenna also can be integrated with printed circuit board (PCB) and is suitable for mobile terminals such as smart phones and tablets.

  • Design and Implementation of SDN-Based Proactive Firewall System in Collaboration with Domain Name Resolution

    Hiroya IKARASHI  Yong JIN  Nariyoshi YAMAI  Naoya KITAGAWA  Kiyohiko OKAYAMA  

     
    PAPER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2633-2643

    Security facilities such as firewall system and IDS/IPS (Intrusion Detection System/Intrusion Prevention System) have become fundamental solutions against cyber threats. With the rapid change of cyber attack tactics, detail investigations like DPI (Deep Packet Inspection) and SPI (Stateful Packet Inspection) for incoming traffic become necessary while they also cause the decrease of network throughput. In this paper, we propose an SDN (Software Defined Network) - based proactive firewall system in collaboration with domain name resolution to solve the problem. The system consists of two firewall units (lightweight and normal) and a proper one will be assigned for checking the client of incoming traffic by the collaboration of SDN controller and internal authoritative DNS server. The internal authoritative DNS server obtains the client IP address using EDNS (Extension Mechanisms for DNS) Client Subnet Option from the external DNS full resolver during the name resolution stage and notifies the client IP address to the SDN controller. By checking the client IP address on the whitelist and blacklist, the SDN controller assigns a proper firewall unit for investigating the incoming traffic from the client. Consequently, the incoming traffic from a trusted client will be directed to the lightweight firewall unit while from others to the normal firewall unit. As a result, the incoming traffic can be distributed properly to the firewall units and the congestion can be mitigated. We implemented a prototype system and evaluated its performance in a local experimental network. Based on the results, we confirmed that the prototype system presented expected features and acceptable performance when there was no flooding attack. We also confirmed that the prototype system showed better performance than conventional firewall system under ICMP flooding attack.

  • Workload Estimation for Firewall Rule Processing on Network Functions Virtualization

    Dai SUZUKI  Satoshi IMAI  Toru KATAGIRI  

     
    PAPER-Network

      Pubricized:
    2017/08/08
      Vol:
    E101-B No:2
      Page(s):
    528-537

    Network Functions Virtualization (NFV) is expected to provide network systems that offer significantly lower cost and greatly flexibility to network service providers and their users. Unfortunately, it is extremely difficult to implement Virtualized Network Functions (VNFs) that can equal the performance of Physical Network Functions. To realize NFV systems that have adequate performance, it is critical to accurately grasp VNF workload. In this paper, we focus on the virtual firewall as a representative VNF. The workload of the virtual firewall is mostly determined by firewall rule processing and the Access Control List (ACL) configurations. Therefore, we first reveal the major factors influencing the workload of the virtual firewall and some issues of monitoring CPU load as a traditional way of understanding the workload of virtual firewalls through preliminary experiments. Additionally, we propose a new workload metric for the virtual firewall that is derived by mathematical models of the firewall workload in consideration of the packet processing in each rule and the ACL configurations. Furthermore, we show the effectiveness of the proposed workload metric through various experiments.

  • On the Use of Information and Infrastructure Technologies for the Smart City Research in Europe: A Survey Open Access

    Juan Ramón SANTANA  Martino MAGGIO  Roberto DI BERNARDO  Pablo SOTRES  Luis SÁNCHEZ  Luis MUÑOZ  

     
    INVITED SURVEY PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    2-15

    The Smart City paradigm has become one of the most important research topics around the globe. Particularly in Europe, it is considered as a solution for the unstoppable increase of high density urban environments and the European Commission has included the Smart City research as one of the key objectives for the FP7 (Seventh Framework Program) and H2020 (Horizon 2020) research initiatives. As a result, a considerable amount of quality research, with particular emphasis on information and communication technologies, has been produced. In this paper, we review the current efforts dedicated in Europe to this research topic. Particular attention is paid in the review to the platforms and infrastructure technologies adopted to introduce the Internet of Things into the city, taking into account the constraints and harshness of urban environments. Furthermore, this paper also considers the efforts in the experimental perspective, which includes the review of existing Smart City testbeds, part of wider European initiatives such as FIRE (Future Internet Research and Experimentation) and FIWARE. Last but not least, the main efforts in providing interoperability between the different experimental facilities are also presented.

  • An Ontological Model for Fire Emergency Situations

    Kattiuscia BITENCOURT  Frederico ARAÚJO DURÃO  Manoel MENDONÇA  Lassion LAIQUE BOMFIM DE SOUZA SANTANA  

     
    PAPER

      Pubricized:
    2017/09/15
      Vol:
    E101-D No:1
      Page(s):
    108-115

    The emergency response process is quite complex since there is a wide variety of elements to be evaluated for taking decisions. Uncertainties generated by subjectivity and imprecision affect the safety and effectiveness of actions. The aim of this paper is to develop an onto-logy for emergency response protocols, in particular, to fires in buildings. This developed ontology supports the knowledge sharing, evaluation and review of the protocols used, contributing to the tactical and strategic planning of organizations. The construction of the ontology was based on the methodology Methontology. The domain specification and conceptualization were based in qualitative research, in which were evaluated 131 terms with definitions, of which 85 were approved by specialists. From there, in the Protégé tool, the domain's taxonomy and the axioms were created. The specialists validated the ontology using the assessment by human approach (taxonomy, application and structure). Thus, a sustainable ontology model to the rescue tactical phase was ensured.

  • Information and Communications Technology in Disaster Mitigation Technology

    Yoshiyuki MATSUBARA  

     
    INVITED PAPER

      Vol:
    E99-A No:8
      Page(s):
    1504-1509

    We arrange disaster mitigation activities into temporal order and discuss the contribution of information and communications technology (ICT) to the reduction of disaster damage in the stages of precaution, emergency response, and post-mortem study. Examples of the current contribution of ICT are introduced and future possible uses of ICT are discussed. We focus on the contribution of ICT to decision-making in emergency responses by augmenting human intelligence. Research directions of ICT for disaster mitigation technology are summarized in the categories “tough ICT”, “intelligence amplification for decision-making in disaster mitigation” and “safe ICT.”

  • Forest Fire Monitoring with an Adaptive In-Network Aggregation Scheduling in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2650-2653

    In this paper, we propose a novel in-network aggregation scheduling scheme for forest fire monitoring in a wireless sensor network. This adaptively configures both the timeout and the collecting period according to the potential level of a fire occurrence. At normal times, the proposed scheme decreases a timeout that is a wait time for packets sent from child nodes and makes the collecting period longer. That reduces the dissipated energy of the sensor node. Conversely, the proposed scheme increases the timeout and makes the collecting period shorter during fire occurrences in order to achieve more accurate data aggregation and early fire detection.

  • A Novel 3D Power Divider Based on Half-Mode Substrate Integrated Circular Cavity

    Jian GU  Yong FAN  Haiyan JIN  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:3
      Page(s):
    379-382

    A new kind of 3D power divider based on a half-mode substrate integrated circular cavity (HSICC) is proposed. This novel power divider can reduce the size of a power divider based on normal substrate integrated circular cavity (SICC) by nearly a half. To verify the validity of the design method, a two-way X-band HSICC power divider using low temperature co-fired ceramic (LTCC) technology is designed, fabricated and measured.

  • Improved Approximation Algorithms for Firefighter Problem on Trees

    Yutaka IWAIKAWA  Naoyuki KAMIYAMA  Tomomi MATSUI  

     
    PAPER

      Vol:
    E94-D No:2
      Page(s):
    196-199

    The firefighter problem is used to model the spread of fire, infectious diseases, and computer viruses. This paper deals with firefighter problem on rooted trees. It is known that the firefighter problem is NP-hard even for rooted trees of maximum degree 3. We propose techniques to improve a given approximation algorithm. First, we introduce an implicit enumeration technique. By applying the technique to existing ()-approximation algorithm, we obtain -approximation algorithm when a root has k children. In case of ternary trees, k=3 and thus the approximation ratio satisfies ≥ 0.6892, which improves the existing result ≥ 0.6321. Second technique is based on backward induction and improves an approximation algorithm for firefighter problem on ternary trees. If we apply the technique to existing () -approximation algorithm, we obtain 0.6976-approximation algorithm. Lastly, we combine the above two techniques and obtain 0.7144-approximation algorithm for firefighter problem on ternary trees.

  • Performance Improvement of Packet Classification for Enabling Differentiated Services

    Pi-Chung WANG  

     
    PAPER

      Vol:
    E93-B No:6
      Page(s):
    1403-1410

    In differentiated services, packet classification is used to categorize incoming packets into multiple forwarding classes based on pre-defined filters and make information accessible for quality of service. Although numerous algorithms have presented novel data structures to improve the search performance of packet classification, the performance of these algorithms are usually limited by the characteristics of filter databases. In this paper, we use a different approach of filter preprocessing to enhance the search performance of packet classification. Before generating the searchable data structures, we cluster filters in a bottom-up manner. The procedure of the filter clustering merges filters with high degrees of similarity. The experimental results show that the technique of filter clustering could significantly improve the search performance of Pruned Tuple Space Search, a notable hash-based algorithm. As compared to the prominent existing algorithms, our enhanced Pruned Tuple Space Search also has superior performance in terms of speed and space.

  • Packet Classification with Hierarchical Cross-Producting

    Chun-Liang LEE  Chia-Tai CHAN  Pi-Chung WANG  

     
    PAPER

      Vol:
    E93-D No:5
      Page(s):
    1117-1126

    Packet classification has become one of the most important application techniques in network security since the last decade. The technique involves a traffic descriptor or user-defined criteria to categorize packets to a specific forwarding class which will be accessible for future security handling. To achieve fast packet classification, we propose a new scheme, Hierarchical Cross-Producting. This approach simplifies the classification procedure and decreases the distinct combinations of fields by hierarchically decomposing the multi-dimensional space based on the concept of telescopic search. Analogous to the use of telescopes with different powers**, a multiple-step process is used to search for targets. In our scheme, the multi-dimensional space is endowed with a hierarchical property which self-divides into several smaller subspaces, whereas the procedure of packet classification is translated into recursive searching for matching subspaces. The required storage of our scheme could be significantly reduced since the distinct field specifications of subspaces is manageable. The performance are evaluated based on both real and synthetic filter databases. The experimental results demonstrate the effectiveness and scalability of the proposed scheme.

  • Scalable Packet Classification with Hash Tables

    Pi-Chung WANG  

     
    LETTER

      Vol:
    E93-B No:5
      Page(s):
    1155-1158

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  • Abnormal Policy Detection and Correction Using Overlapping Transition

    Sunghyun KIM  Heejo LEE  

     
    PAPER

      Vol:
    E93-D No:5
      Page(s):
    1053-1061

    Policy in security devices such as firewalls and Network Intrusion Prevention Systems (NIPS) is usually implemented as a sequence of rules. This allows network packets to proceed or to be discarded based on rule's decision. Since attack methods are increasing rapidly, a huge number of security rules are generated and maintained in security devices. Under attack or during heavy traffic, the policy configured wrong creates security holes and prevents the system from deciding quickly whether to allow or deny a packet. Anomalies between the rules occur when there is overlap among the rules. In this paper, we propose a new method to detect anomalies among rules and generate new rules without configuration error in multiple security devices as well as in a single security device. The proposed method cuts the overlap regions among rules into minimum overlap regions and finds the abnormal domain regions of rules' predicates. Classifying rules by the network traffic flow, the proposed method not only reduces computation overhead but blocks unnecessary traffic among distributed devices.

  • Efficient Packet Classification with a Hybrid Algorithm

    Pi-Chung WANG  

     
    PAPER-QoS and Quality Management

      Vol:
    E92-D No:10
      Page(s):
    1915-1922

    Packet classification categorizes incoming packets into multiple forwarding classes based on pre-defined filters. This categorization makes information accessible for quality of service or security handling in the network. In this paper, we propose a scheme which combines the Aggregate Bit Vector algorithm and the Pruned Tuple Space Search algorithm to improve the performance of packet classification in terms of speed and storage. We also present the procedures of incremental update. Our scheme is evaluated with filter databases of varying sizes and characteristics. The experimental results demonstrate that our scheme is feasible and scalable.

  • A 100-Gb/s-Physical-Layer Architecture for Higher-Speed Ethernet for VSR and Backplane Applications

    Hidehiro TOYODA  Shinji NISHIMURA  Michitaka OKUNO  Matsuaki TERADA  

     
    PAPER-VLSI Architecture for Communication/Server Systems

      Vol:
    E90-C No:10
      Page(s):
    1957-1963

    A high-speed physical-layer architecture for next-generation higher-speed Ethernet for VSR and backplane applications was developed. VSR and backplane networks provide 100-Gb/s data transmission in "mega data centers" and blade servers, which have new and broad potential markets of LAN technologies. It supports 100-Gb/s-throughput, high-reliability, and low-latency data transmission, making it well suited to VSR and backplane applications for intra-building and intra-cabinet networks. Its links comprise ten 10-Gb/s high-speed serial lanes. Payload data are transmitted by ribbon fiber cables for very short reach and by copper channels for the backplane board. Ten lanes convey 320-bit data synchronously (32 bits10 lanes) and parity data of forward-error correction code (newly developed (544, 512) code FEC), providing highly reliable (BER<1E-22) data transmission with a burst-error correction with low latency (31.0 ns on the transmitter (Tx) side and 111.6 ns on the receiver (Rx) side). A 64B/66B code-sequence-based skew compensation mechanism, which provides low-latency compensation for the lane-to-lane skew (less than 51 ns), is used for parallel transmission. Testing this physical-layer architecture in an ASIC showed that it can provide 100-Gb/s data transmission with a 772-kgate circuit, which is small enough for implementation in a single LSI.

  • Analysis of the Behavior of Cuprous Oxide by Acceleration Test for Evaluation of Heat and Fire Phenomena of Imperfectly Connected Electrical Terminal

    Yoichi AOYAMA  Hisa NUMA  Ryo FUJITA  

     
    PAPER-Contact Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1398-1404

    To evaluate heat and fire phenomena caused by accumulated microslide motion on an imperfectly connected electrical terminal, an acceleration test method using vibrator was developed. The process from the generation of CuO to that of Cu2O has been reproduced. The influence of current is investigated, and it is found that as current increases, CuO generation time T1 and Cu2O generation time T2 decrease for pure copper, however when current exceeds 3 A, we could not produce CuO or Cu2O. The contact resistances of a Cu terminal and wire, compared with the terminal material were investigated in terms of the effects of current and ambient temperature.

  • A Low Loss Multi-Layer Dielectric Waveguide Filter for 60-GHz System-on-Package Applications

    Dong Yun JUNG  Won Il CHANG  Ji Hoon KIM  Chul Soon PARK  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1690-1691

    For V-band applications, this paper presents a fully embedded multi-layer dielectric waveguide filter (DWGF) with very low insertion loss and small size, which does not need any more assemblies such as flip-chip bonding and bond wires. The top and bottom plane are grounded, and therefore, although we make a metal housing, there will be no resonance occurrences. Especially, the proposed structure is very suitable for MMICs interconnection because the in/output pads consist of conductor backed co-planar waveguide (CBCPW). The filter is formed incorporating metallized through holes in low temperature co-fired ceramic (LTCC) substrates with relative dielectric constant of 7.05. The total volume of the filter including transitions is 4.5 mm2.65 mm0.4 mm. A fabricated DWGF with four transitions shows an insertion loss and a return loss of 2.95 dB and less than 15 dB at the center frequency of 62.17 GHz, respectively. According to the authors' knowledge, the proposed filter shows the lowest insertion loss among the embedded multi-layer millimeter-wave filters ever reported for 60 GHz applications.

  • Synchronization and Window Map from Pulse-Coupled Relaxation Oscillators

    Masanao SHIMAZAKI  Hiroyuki TORIKAI  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E87-A No:9
      Page(s):
    2426-2431

    We present mutually pulse-coupled two relaxation oscillators having refractoriness. The system can be implemented by a simple electrical circuit, and various periodic synchronization phenomena can be observed experimentally. The phenomena are characterized by a ratio of phase locking. Using a return map having a trapping window, the ratio can be analyzed in a parameter subspace rigorously. We then clarify effects of the refractoriness on the pulse coding ability of the system.

1-20hit(31hit)