The search functionality is under construction.

Keyword Search Result

[Keyword] GFSK(4hit)

1-4hit
  • MLSE Based on Phase Difference FSM for GFSK Signals

    Kyu-Man LEE  Taek-Won KWON  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    328-331

    Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The receivers mostly adopt the Viterbi algorithm to improve a bit error rate performance but are hampered by heavy hardware complexity and computational load due to a coherent detection and searching for the unknown modulation index. To address these challenges, a non-coherent maximum likelihood estimation detector with an eight-state Viterbi is proposed for Gaussian frequency-shift keying symbol detection against an irrational modulation index, without any knowledge of prior information or assumptions. The simulation results showed an improvement in the performance compared to other ideal approaches.

  • A Dual-Mode Bluetooth Transceiver with a Two-Point-Modulated Polar-Loop Transmitter and a Frequency-Offset-Compensated Receiver

    Takashi OSHIMA  Masaru KOKUBO  

     
    PAPER-Circuit Theory

      Vol:
    E90-A No:8
      Page(s):
    1669-1678

    An entire dual-mode transceiver capable of both the conventional GFSK-modulated Bluetooth and the Medium-Rate π/4-DQPSK-modulated Bluetooth has been investigated and reported. The transmitter introduces a novel two-point-modulated polar-loop technique without the global feedback to realize reduced power consumption, small chip area and also high modulation accuracy. The receiver shares all the circuits for both operating modes except the demodulators and also features a newly-proposed cancellation technique of the carrier-frequency offset. The transceiver has been confirmed by system or circuit simulations to meet all the dual-mode Bluetooth specifications. The simulation results show that the transmitting power can be larger than 10 dBm while achieving the total power efficiency above 30% and also RMS DEVM of 0.050. It was also confirmed by simulation that the receiver is expected to attain the sensitivity of -85 dBm in both modes while satisfying the image-rejection and the blocker-suppression specifications. The proposed transceiver will provide a low-cost, low-power single-chip RF-IC solution for the next-generation Bluetooth communication.

  • A 2.4-GHz Temperature-Compensated CMOS LC-VCO for Low Frequency Drift Low-Power Direct-Modulation GFSK Transmitters

    Toru TANZAWA  Kenichi AGAWA  Hiroyuki SHIBAYAMA  Ryota TERAUCHI  Katsumi HISANO  Hiroki ISHIKURO  Shouhei KOUSAI  Hiroyuki KOBAYASHI  Hideaki MAJIMA  Toru TAKAYAMA  Masayuki KOIZUMI  Fumitoshi HATORI  

     
    PAPER-Analog

      Vol:
    E88-C No:4
      Page(s):
    490-495

    A frequency drift of open-loop PLL is an issue for the direct-modulation applications such as Bluetooth transceiver. The drift mainly comes from a temperature variation of VCO during the transmission operation. In this paper, we propose the optimum location of the VCO, considering the temperature gradient through the whole-chip thermal analysis. Moreover, a novel temperature-compensated VCO, employing a new biasing scheme, is proposed. The combination of these two techniques enables the power reduction of the transmitter by 33% without sacrificing the performance.

  • Fractionally-Spaced Differential Detection of GFSK Signals with Small h

    Sukkyun HONG  Yong-Hwan LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:12
      Page(s):
    3226-3234

    A digital noncoherent demodulation scheme is presented for reception of Gaussian frequency shift keying (GFSK) signals with small modulation index. The proposed differential demodulator utilizes oversampled signals to estimate the symbol timing and to compensate the frequency offset. The performance of the proposed receiver is evaluated in terms of the bit-error rate (BER). Numerical results show that the proposed demodulator provides performance comparable to that of conventional baseband differential demodulator, while significantly reducing the implementation complexity suitable for single chip integration with direct conversion radio frequency module. Finally the performance of the proposed receiver is improved by adding a simple decision feedback module.