The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] HOC(320hit)

21-40hit(320hit)

  • PRIOR: Prioritized Forwarding for Opportunistic Routing

    Taku YAMAZAKI  Ryo YAMAMOTO  Takumi MIYOSHI  Takuya ASAKA  Yoshiaki TANAKA  

     
    PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    28-41

    In ad hoc networks, broadcast forwarding protocols called OR (opportunistic routing) have been proposed to gain path diversity for higher packet delivery rates and shorter end-to-end delays. In general backoff-based OR protocols, each receiver autonomously makes a forwarding decision by using certain metrics to determine if a random backoff time is to be applied. However, each forwarder candidate must wait for the expiration of the backoff timer before forwarding a packet. Moreover, they cannot gain path diversity if the forwarding path includes local sparse areas, and this degrades performance as it strongly depends on the terminal density. In this paper, we propose a novel OR protocol called PRIOR (prioritized forwarding for opportunistic routing). In PRIOR, a terminal, called a prioritized forwarder and which forwards packets without using a backoff time, is selected from among the neighbours. In addition, PRIOR uses lightweight hop-by-hop retransmission control to mitigate the effect of terminal density. Moreover, we introduce an enhancement to PRIOR to reduce unnecessary forwarding by using an explicit acknowledgement. We evaluate PRIOR in comparison with conventional protocols in computer simulations.

  • Towards Practical Store-Carry-Forward Networking: Examples and Issues Open Access

    Masato TSURU  Mineo TAKAI  Shigeru KANEDA   Agussalim  Rabenirina AINA TSIORY  

     
    INVITED PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    2-10

    In the evolution of wireless networks such as wireless sensor networks, mobile ad-hoc networks, and delay/disruption tolerant networks, the Store-Carry-Forward (SCF) message relaying paradigm has been commonly featured and studied with much attention. SCF networking is essential for offsetting the deficiencies of intermittent and range limited communication environments because it allows moving wireless communication nodes to act as “mobile relay nodes”. Such relay nodes can store/carry/process messages, wait for a better opportunity for transmission, and finally forward the messages to other nodes. This paper starts with a short overview of SCF routing and then examines two SCF networking scenarios. The first one deals with large content delivery across multiple islands using existing infrastructural transportation networks (e.g., cars and ferries) in which mobility is uncontrollable from an SCF viewpoint. Simulations show how a simple coding technique can improve flooding-based SCF. The other scenario looks at a prototype system of unmanned aerial vehicle (UAV) for high-quality video surveillance from the sky in which mobility is partially controllable from an SCF viewpoint. Three requisite techniques in this scenario are highlighted - fast link setup, millimeter wave communications, and use of multiple links. Through these examples, we discuss the benefits and issues of the practical use of SCF networking-based systems.

  • Home Base-Aware Store-Carry-Forward Routing Using Location-Dependent Utilities of Nodes

    Tomotaka KIMURA  Yutsuki KAYAMA  Tetsuya TAKINE  

     
    PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    17-27

    We propose a home base-aware store-carry-forward routing scheme using location-dependent utilities of nodes, which adopts different message forwarding strategies depending on location where nodes encounter. Our routing scheme first attempts to deliver messages to its home base, the area with the highest potential for the presence of the destination node in the near future. Once a message copy reaches its home base, message dissemination is limited within the home base, and nodes with message copies wait for encountering the destination node. To realize our routing scheme, we use two different utilities of nodes depending on location: Outside the home base of a message, nodes approaching to the home base have high utility values, while within the home base, nodes staying the home base have high utility values. By using these utilities properly, nodes with message copies will catch the destination node “by ambush” in the home base of the destination node. Through simulation experiments, we demonstrate the effectiveness of our routing scheme.

  • A One-Round Certificateless Authenticated Group Key Agreement Protocol for Mobile Ad Hoc Networks

    Dongxu CHENG  Jianwei LIU  Zhenyu GUAN  Tao SHANG  

     
    PAPER-Information Network

      Pubricized:
    2016/07/21
      Vol:
    E99-D No:11
      Page(s):
    2716-2722

    Established in self-organized mode between mobile terminals (MT), mobile Ad Hoc networks are characterized by a fast change of network topology, limited power dissipation of network node, limited network bandwidth and poor security of the network. Therefore, this paper proposes an efficient one round certificateless authenticated group key agreement (OR-CLAGKA) protocol to satisfy the security demand of mobile Ad Hoc networks. Based on elliptic curve public key cryptography (ECC), OR-CLAGKA protocol utilizes the assumption of elliptic curve discrete logarithm problems (ECDLP) to guarantee its security. In contrast with those certificateless authenticated group key agreement (GKA) protocols, OR-CLAGKA protocol can reduce protocol data interaction between group users and it is based on efficient ECC public key infrastructure without calculating bilinear pairings, which involves negligible computational overhead. Thus, it is particularly suitable to deploy OR-CLAGKA protocol on MT devices because of its limited computation capacity and power consumption. Also, under the premise of keeping the forward and backward security, OR-CLAGKA protocol has achieved appropriate optimization to improve the performance of Ad Hoc networks in terms of frequent communication interrupt and reconnection. In addition, it has reduced executive overheads of key agreement protocol to make the protocol more suitable for mobile Ad Hoc network applications.

  • Proposal for Designing Method of Radio Transmission Range to Improve Both Power Saving and Communication Reachability Based on Target Problem

    Ryo HAMAMOTO  Chisa TAKANO  Hiroyasu OBATA  Masaki AIDA  Kenji ISHIDA  

     
    PAPER

      Vol:
    E99-B No:11
      Page(s):
    2271-2279

    Geocast communication provides efficient group communication services to distribute information to terminals that exist in some geographical domain. For various services which use geocast communication, ad hoc network is useful as network structure. Ad hoc networks are a kind of self-organing network where terminals communicate directly with each other without network infrastructure. For ad hoc networks, terminal power saving is an important issue, because terminals are driven by the battery powered system. One approach for this issue is reducing the radio transmission range of each terminal, but it degrades reachability of user data for each terminal. In this paper, we propose a design method for radio transmission range using the target problem to improve both terminal power saving and reachability for geocast communication in an ad hoc network. Moreover, we evaluate the proposed method considering both routing protocols and media access control protocols, and clarify the applicability of the proposed method to communication protocols.

  • A Survey of Geographic Routing Protocols for Vehicular Ad Hoc Networks as a Sensing Platform

    Kenichi MASE  

     
    SURVEY PAPER

      Vol:
    E99-B No:9
      Page(s):
    1938-1948

    An overview of the evolution of intelligent transport systems (ITS) supported by advances in information and communication technologies is presented. Focusing on a sensing platform as one of the ITS applications, this paper presents a survey on vehicular ad hoc network-based geographic routing. In addition to the minimum requirement of street-awareness based on street maps, traffic and packet-awareness are considered essential to achieve acceptable packet delivery performance. In particular, in addition to statistical information, real-time traffic and packet level information are indispensable for making routing protocols feasible and effective. Considering traffic conditions that are highly space- and time-dependent, static nodes can be used to assist with geographic routing, and a protocol workable under a partial deployment of static nodes is considered.

  • Location-Aware Forwarding and Caching in CCN-Based Mobile Ad Hoc Networks

    Rana Asif REHMAN  Byung-Seo KIM  

     
    LETTER-Information Network

      Pubricized:
    2016/02/17
      Vol:
    E99-D No:5
      Page(s):
    1388-1391

    Content centric network (CCN) is conceived as a good candidate for a futuristic Internet paradigm due to its simple and robust communication mechanism. By directly applying the CCN paradigm in wireless multihop mobile ad hoc networks, we experience various kind of issues such as packet flooding, data redundancy, packet collisions, and retransmissions etc., due to the broadcast nature of the wireless channel. To cope with the problems, in this study, we propose a novel location-aware forwarding and caching scheme for CCN-based mobile ad hoc networks. Extensive simulations are performed by using simulator, named ndnSIM. Experiment results show that proposed scheme does better as compared to other schemes in terms of content retrieval time and the number of Interest retransmissions triggered in the network.

  • Minimizing Re-Transmissions (MRT) for Broadcast Traffic in Ad Hoc Wireless Networks

    Nguyen Xuan TIEN  Jong Myung RHEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:1
      Page(s):
    257-268

    Broadcasting is the process of sending a message from one node to all the other nodes in a network. Simple flooding is the simplest form of broadcasting in ad hoc wireless networks. Simple flooding provides important control, route discovery, and network information update functionality for unicast and multicast protocols. However, simple flooding generates too many broadcast message duplications in ad hoc wireless networks. Minimum spanning tree (MST)-based flooding has traditionally been used in networks to reduce the broadcast duplications by determining broadcast trees using global topology information. However, MST-based flooding still generates a lot of broadcast traffic duplications. In this paper, we propose an efficient type of flooding, called “minimizing re-transmissions” (MRT), to significantly reduce the broadcast duplications. The purpose of MRT is to minimize the number of retransmitting nodes in an ad hoc wireless network based on the network's link state information. This advantage of minimizing the number of retransmitting nodes significantly reduces broadcast message duplications in ad hoc wireless networks. The performance of MRT is analyzed, evaluated, and compared to that of the simple flooding and the MST-based flooding. Simulations are conducted using the OMNet++ Simulator in order to validate the traffic performance analysis. For our sample network, analytical and simulation results show that MRT reduces broadcast message duplications by about 80% compared to simple flooding and by about 68% compared to MST-based flooding, thus saving a significant amount of network bandwidth and energy. MRT can be used in static or mobile ad hoc wireless networks and in wired networks to implement scalable broadcast communications.

  • Contact Duration-Aware Epidemic Broadcasting in Delay/Disruption-Tolerant Networks Open Access

    Kohei WATABE  Hiroyuki OHSAKI  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2389-2399

    DTNs (Delay/Disruption-Tolerant Networks) composed of mobile nodes in low node-density environments have attracted considerable attention in recent years. In this paper, we propose a CD-BCAST (Contact Duration BroadCAST) mechanism that can reduce the number of message forwardings while maintaining short message delivery delays in DTNs composed of mobile nodes. The key idea behind CD-BCAST is to increase the probability of simultaneous forwarding by intentionally delaying message forwarding based on the contact duration distribution measured by each node. Through simulations, we show that CD-BCAST needs substantially less message forwardings than conventional mechanisms and it does not require parameter tuning under varieties of communication ranges and node densities.

  • Energy Aware Forwarding in Content Centric Based Multihop Wireless Ad Hoc Networks

    Rana Asif REHMAN  Byung-Seo KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E98-A No:12
      Page(s):
    2738-2742

    Content centric networking (CCN) is a newly proposed futuristic Internet paradigm in which communication depends on the decoupling of content names from their locations. In CCN-based multihop wireless ad hoc networks, the participating nodes show dynamic topology, intermittent connectivity, channels fluctuation, and severe constraints such as limited battery power. In the case of traffic congestion, the affected nodes die early owing to the shortage of battery power. Consequently, all pending request entries are also destroyed, which further degrades the network performance as well as the node working lifetime. In this study, we have proposed a novel energy aware transmission scheme in which the forwarding mechanism is based on a node's residual energy. The proposed scheme is evaluated using official ndnSIM. This scheme enhances performance in terms of content retrieval time and total Interest transmission in the network.

  • Rescue Support System with DTN for Earthquake Disasters

    Raito MATSUZAKI  Hiroyuki EBARA  Noriaki MURANAKA  

     
    PAPER-Network System

      Vol:
    E98-B No:9
      Page(s):
    1832-1847

    In a previous paper, we proposed a rescue support system for victims buried in an earthquake disaster by constructing an ad-hoc network using home-server based smart homes. However, this system has the following two problems: i) it cannot ensure sufficient density of home servers to realize adequate WLAN coverage, ii) the system does not consider areas in which home servers cannot be used such as parks and factories, for example. In this paper, we propose a new method using a delay tolerant network (DTN) technique. In this method, rescuers (such as rescue teams) with mobile devices relay information between disconnected networks by walking around during rescue activities. For a performance evaluation, we performed simulation experiments using a map of Abeno-ku, Osaka. From our results, we show that the proposed method increases the information acquisition rate, and that the network can be maintained. We also quantitatively show the penetration rate of smart homes needed for our system. In addition, we show that the rescue request system is more effective than other systems, and the method with the mobile device relay is better than without this method.

  • Design of Two-Way Relay Network Using Space-Time Block Coded Network Coding with Relay Selection

    Xuan Nam TRAN  Van Bien PHAM  Duc Hiep VU  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1657-1666

    This paper presents the design of an ad hoc two-way two-hop relay network using physical-layer network coding (PNC) in which multiple antennas are used at all nodes. In the considered network, the Alamouti's space-time block code (STBC) is used for transmission while linear detection is used for signal recovery. In order to facilitate linear estimation, we develop an equivalent multiuser STBC model for the proposed network and design the sum-and-difference matrix which allows convenient combination of the transmitted symbols from the end nodes. In addition, a simple relay selection method based on minimum mean square error (MSE) is proposed for performance improvement. Simulation results show that the proposed network achieves diversity order 2 while requiring only polynomial complexity. Moreover, it is possible to achieve significant bit error rate (BER) performance improvement when the proposed relay selection algorithm is used.

  • Throughput Capacity Study for MANETs with Erasure Coding and Packet Replication

    Bin YANG  Yin CHEN  Guilin CHEN  Xiaohong JIANG  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1537-1552

    Throughput capacity is of great importance for the design and performance optimization of mobile ad hoc networks (MANETs). We study the exact per node throughput capacity of MANETs under a general 2HR-(g, x, f) routing scheme which combines erasure coding and packet replication techniques. Under this scheme, a source node first encodes a group of g packets into x (x ≥ g) distinct coded packets, and then replicates each of the coded packets to at most f relay nodes which help to forward them to the destination node. All original packets can be recovered once the destination node receives any g distinct coded packets of the group. To study the throughput capacity, we first construct two absorbing Markov chain models to depict the complicated packet delivery process under the routing scheme. Based on these Markov models, an analytical expression of the throughput capacity is derived. Extensive simulation and numerical results are provided to verify the accuracy of theoretical results on throughput capacity and to illustrate how system parameters will affect the throughput capacity in MANETs. Interestingly, we find that the replication of coded packets can improve the throughput capacity when the parameter x is relatively small.

  • Proposal and Realistic Evaluation of a New Routing Algorithm for a Regional Protection System

    Hikofumi SUZUKI  Shinichi KARASAWA  David ASANO  Yasushi FUWA  

     
    LETTER

      Vol:
    E98-A No:8
      Page(s):
    1667-1670

    A regional protection system based on a wireless Ad-Hoc network has been in operation since 2008 in Shiojiri City, Japan. Wireless terminals transmit data packets to a server via transponders situated around the city. In this paper, a new routing algorithm that takes into account the level of congestion of the transponders is proposed. Using computer simulations, the proposed algorithm is shown to reduce the packet loss rate compared to the previous algorithm which is based on minimization of the number of hops to the server. Also, the proposed algorithm is shown be have almost the same packet loss rate as the best routing decisions obtained by an exhaustive search. Furthermore, the simulations used recreate the actual movement of terminals, so the results show what will happen in a realistic environment.

  • A Bullet-Proof Verification Approach to Defend against Black Hole Attacks in Mobile Ad Hoc Networks

    Firoz AHMED  Seokhoon YOON  Hoon OH  

     
    PAPER-Network

      Vol:
    E98-B No:3
      Page(s):
    422-436

    In mobile ad hoc networks, a malicious node can respond with a faked route reply (RREP) message to a source that explores a route in order to make the source establish a false route leading to the malicious node. Then, the malicious node can absorb all transmitted packets like a black hole. This paper proposes a totally secure defense against the black hole attack with low control overhead and high reliability. The proposed approach, named a bullet-proof verification (BPV) method, consists of a detection phase, in which a node detects a suspicious node by analyzing the data routing information of its neighbors and a verification phase, in which a node initiates the verification of a suspicious node conditionally only if it receives RREP from the suspicious node. The crux of this approach lies in using an encrypted verification message that goes straight to the destination through the path that may include some malicious nodes and also in using both destination sequence number and hop distance for verification. In addition, a distributed watchdog mechanism is employed to track down any malicious nodes. Simulation results show that the BPV approach reduces control overhead significantly and defends against black hole attack reliably.

  • Defense Mechanisms against Injecting Traffic with MAC Layer Misbehavior Detection and Cooperation Stimulation for Autonomous Ad Hoc Networks

    Amin JAMALI  Mehdi BERENJKOUB  Hossein SAIDI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:2
      Page(s):
    710-720

    Autonomous ad hoc networks are networks with nodes belonging to different authorities, and cooperative behavior of nodes is not guaranteed in such networks. In this paper, defense mechanisms are introduced to protect nodes against injecting traffic attacks in an autonomous ad hoc network, and to stimulate nodes to forward packets for each other. We have a cross-layer approach in the design of our mechanisms, and nodes use information from medium access control (MAC) layer for selecting a good route. In addition, nodes attempt to drop packets of those nodes that violate MAC layer backoff mechanism. Analytical and simulation results demonstrate the effectiveness of our proposed mechanisms in the presence of injecting traffic attacks and MAC layer misbehaviors in an ad hoc network that consists of selfish nodes.

  • Greedy Zone Epidemic Routing in Urban VANETs

    Guangchun LUO  Haifeng SUN  Ke QIN  Junbao ZHANG  

     
    PAPER-Network

      Vol:
    E98-B No:1
      Page(s):
    219-230

    The potential of infrastructureless vehicular ad hoc networks (VANETs) for providing multihop applications is quite significant. Although the Epidemic Routing protocol performs well in highly mobile and frequently disconnected VANETs with low vehicle densities or light packet traffic loads, its performance degrades greatly in environments of high vehicle density together with heavy packet traffic loads that create serious bandwidth contention and frequent collisions. We propose a new epidemic routing protocol in urban environments called Greedy Zone Epidemic Routing (GZER), in which the neighbors of a vehicle are divided into different zones according to their physical locations. Each vehicle maintains a summary vector (SV) of packets buffered locally and zone summary vectors (ZSVs) of all packets buffered in each zone. Whether the infection will be transmitted in each zone is decided by the difference between SV and ZSV. Simulation results show that the proposed GZER protocol outperforms the existing solutions significantly, especially in the environments of high vehicle densities together with heavy packet traffic loads.

  • MPVUS: A Moving Prediction Based Video Streaming Uploading Scheme over Vehicular Networks

    Xiaojin ZHU  Jingping BI  Jianhang LIU  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    304-312

    Video streaming uploading over vehicular ad hoc networks (VANETs) can support many interesting applications. Due to the high mobility and dynamic topology of VANETs, how to support video streaming using wireless communications between vehicles and road-side access points still remains an open issue. In this paper, we propose a geographical uploading scheme, called MPVUS, which uses the moving prediction to keep the stable forwarding and reduce the high link failure probability over VANETs. The scheme also decides the AP switch opportunity by traffic flow estimation, so as to adjust the forwarding direction timely to avoid the short-sighted switch decision. Simulation results demonstrate the effectiveness of our scheme, which can achieve good performance in terms of the start-up delay, playback interruption ratio and video frame distortion.

  • Cooperation between Channel Access Control and TCP Rate Adaptation in Multi-Hop Ad Hoc Networks

    Pham Thanh GIANG  Kenji NAKAGAWA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    79-87

    In this paper, we propose a new cross-layer scheme Cooperation between channel Access control and TCP Rate Adaptation (CATRA) aiming to manage TCP flow contention in multi-hop ad hoc networks. CATRA scheme collects useful information from MAC and physical layers to estimate channel utilization of the station. Based on this information, we adjust Contention Window (CW) size to control the contention between stations. It can also achieve fair channel access for fair channel access of each station and the efficient spatial channel usage. Moreover, the fair value of bandwidth allocation for each flow is calculated and sent to the Transport layer. Then, we adjust the sending rate of TCP flow to solve the contention between flows and the throughput of each flow becomes fairer. The performance of CATRA is examined on various multi-hop network topologies by using Network Simulator (NS-2).

  • Location-Aware Store-Carry-Forward Routing Based on Node Density Estimation

    Tomotaka KIMURA  Takahiro MATSUDA  Tetsuya TAKINE  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    99-106

    We consider a location-aware store-carry-forward routing scheme based on node density estimation (LA Routing in short), which adopts different message forwarding strategies depending on node density at contact locations where two nodes encounter. To do so, each node estimates a node density distribution based on information about contact locations. In this paper, we clarify how the estimation accuracy affects the performance of LA Routing. We also examine the performance of LA Routing when it applies to networks with homogeneous node density. Through simulation experiments, we show that LA Routing is fairly robust against the accuracy of node density estimation and its performance is comparable with Probabilistic Routing even in the case that that node density is homogeneous.

21-40hit(320hit)