The search functionality is under construction.

Keyword Search Result

[Keyword] Josephson effect(7hit)

1-7hit
  • Magnetic Josephson Junctions: New Phenomena and Physics with Diluted Alloy, Conventional Ferromagnet, and Multilayer Barriers Open Access

    Taro YAMASHITA  

     
    INVITED PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    422-428

    We review a new superconducting element, called “magnetic Josephson junctions” with a magnetic barrier instead of the insulating barrier of conventional Josephson junctions. We classify the three types of magnetic barrier, i.e., diluted alloy, conventional ferromagnet, and magnetic multilayer barriers, and introduce various new physics such as the π-state arising in magnetic Josephson junctions due to the interaction between superconductivity and magnetism.

  • Analysis of the Operation Modes of an RF-Field-Driven DC-SQUID

    Yoshinao MIZUGAKI  Keiji SUGI  

     
    PAPER-SQUIDs

      Vol:
    E86-C No:1
      Page(s):
    55-58

    Analysis of the operation modes of an RF-Field-Driven DC-SQUID (RFDS) is presented. We numerically calculate the current-voltage characteristics (IVC) of the RFDS, where the RF signal is coupled to the SQUID loop magnetically. Under no DC offset flux, the IVC exhibit the enhancement of the even-order steps. We first evaluate the dependence of the maximum 2nd step height of the RFDS upon frequency. Contrary to the results for a single junction, the RFDS maintains its step height at a certain value in the low frequency region. The maintained values of the maximum step height are dependent on βL. The smaller βL is, the larger the maximum step height becomes. Next, we evaluate the dependence of the current positions of the 2nd step upon the amplitude of the RF signal. Under the low frequency condition, the current positions agree with the interference patterns of the SQUID, which means that the operation of the RFDS is based on the quantum transitions in the SQUID loop. Under the high frequency condition, on the other hand, the current positions agree with the results for the single junction, which means that the quantum transitions does not follow the RF signal and that the RFDS behaves like a single junction.

  • Intrinsic Josephson Junctions in BiSrCaCuO-2212: Recent Progress

    Huabing WANG  Jian CHEN  Lixing YOU  Peiheng WU  Tsutomu YAMASHITA  

     
    INVITED PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    691-695

    In this paper, we review the progress in BiSrCaCuO-2212 Intrinsic Josephson junctions (IJJs) by summarizing our recent results in fabrication and high frequency experiments. Using a double-side fabrication process, a well defined number of intrinsic Josephson junctions in a well defined geometry can be fabricated. The junctions in the stack are quite homogeneous, and the power distribution of external irradiation among the junctions is even. Shapiro steps are clearly observed up to 2.5 THz, and the general condition for the occurrence of Shapiro steps at frequency frf is that it should be much greater than the plasma frequency fpl. Under certain conditions the Shapiro steps are zero-crossing, making some applications possible, such as quantum voltage standard etc.

  • Fabrication and Properties of Planar Intrinsic Josephson Junctions with In-Plane Aligned YBCO Films

    Lan ZHANG  Masataka MORIYA  Takayuki KOBAYASHI  Masashi MUKAIDA  Toshinari GOTO  

     
    PAPER-Junctions and Processing

      Vol:
    E85-C No:3
      Page(s):
    764-768

    High-Tc superconductors convincingly showed that these materials are essentially natural arrays of Josephson junctions formed in atomic scale. In this paper, in-plane aligned a-axis-oriented YBa2Cu3O7-δ (YBCO) thin films were successfully grown on LaSrGaO4(LSGO) (100) substrates which were cleaned by ion-beam. Voltage jumps with hysteresis implying intrinsic Josephson effects are observed in c-axis direction. This result suggest that it is possible to achieve planar intrinsic Josephson devices which have applications in high frequency electronics, such as voltage standards, Josephson masers and so on.

  • Flux-Quantum Transitions in a Three-Junction SQUID Controlled by Two RF Signals

    Yoshinao MIZUGAKI  Jian CHEN  Kensuke NAKAJIMA  Tsutomu YAMASHITA  

     
    PAPER-Novel Devices and Device Physics

      Vol:
    E85-C No:3
      Page(s):
    803-808

    We present analytical and numerical results on the flux-quantum transitions in a three-junction superconducting quantum interference device (3J-SQUID) controlled by two RF signals. The 3J-SQUID has two superconducting loops, and the RF signals are magnetically coupled to the loops. Flux-quantum transitions in the 3J-SQUID loops can be controlled by utilizing the phase difference of the two RF signals. Under proper conditions, we can obtain a situation where one flux quantum passes through the 3J-SQUID per one cycle of the RF signals without DC current biasing, which results in a zero-crossing step on the current-voltage characteristics. In this paper, we first explain the operation principle by using a quantum state diagram of a 3J-SQUID. Next, we numerically simulate RF-induced transitions of the quantum states. A zero-crossing step on the current-voltage characteristics is demonstrated. We also investigate dependence of zero-crossing steps upon parameters of the 3J-SQUID and RF signals.

  • Intrinsic Josephson Junction Arrays on Bi2Sr2CaCu2O8+x Single Crystals and Their Possible Applications at 100 GHz

    Huabing WANG  Jian CHEN  Kensuke NAKAJIMA  Tsutomu YAMASHITA  Peiheng WU  

     
    PAPER-Analog Applications

      Vol:
    E84-C No:1
      Page(s):
    61-66

    C-axis junction-arrays, with a-b plane sizes of sub-microns to 10 microns, were patterned on Bi2Sr2CaCu2O8+x single crystals with either a mesa or an overlap structure. We measured the current-voltage (I-V) characteristics with microwave irradiation at a few to 100 gigahertz. At a few gigahertz, often observed were chaotic properties. Under irradiation at 100 GHz, we successfully performed harmonic mixings between the 100 GHz signal and up to the 100th harmonic of a local oscillator at about 1 GHz. Given in this paper are discussions on the observation of individual Shapiro steps, and descriptions of the relevant results. Our experimental results show that intrinsic Josephson junctions in layered superconductors can be good candidates for high frequency applications.

  • Comparison of Josephson Microwave Self-Radiation and Linewidth Properties in Various YBa2Cu3Oy Grain Boundary Junctions

    Kiejin LEE  Ienari IGUCHI  

     
    PAPER-Microwave devices

      Vol:
    E78-C No:5
      Page(s):
    490-497

    We have investigated the Josephson microwave self-radiation and the linewidth from different types of YBa2Cu3Oy(YBCO) grain boundary junctions: natural grain boundary junctions, step-edge junctions and bicrystal junctions. The Josephson self-rediation was directly observed using a total power radiometer receiver with receiving frequencies fREC=1.7-72 GHz. All junctions exhibited microwave self-radiation peaks with intensity of order of 10-12-10-14 W. For step-edge and bicrystal junction, they appeared at a voltage related to the Josephson frequency-voltage relation, V=n(h/2e)f, while for natural grain boundary junctions, the above relation did not hold, suggesting a Josephson medium property. For all types of junctions the observed Josephson linewidth deviated from the theoretical RSJ values due to the extra noise source in the grain boundary junction. The Josephson linewidth decreased with increasing the receiving frequency for all type of junctions. The reduction of Josephson linewidth at higher frequencies indicates that the critical current fluctuations due to a critical current spread at small bias voltages and a crystalline disorientation at the junction boundary generate an additional noise in grain boundary junctions.