Random fluctuations of the propagation constants of modes along the fiber axis are taken into consideration and the power coupling coefficient between cores of an image fiber is theoretically derived. For the fiber used for the measurement in the previous paper (A. Komiyama, IEICE, vol.E79-C, no.2, pp.243-248, 1996) it is verified that the coupling coefficient can be described in terms of statistical properties of the propagation constants in the cross-section of the fiber.
Mahmoud OMID Yoshio KAMI Masashi HAYAKAWA
This paper presents a theory based on combined differential- and common-mode propagation for crosstalk and transient analysis of pairs of asymmetric coupled interconnects with arbitrary time-invariant linear termination circuits. Time-domain solutions are obtained by an exact numerical inversion of Laplace transform (NILT). Two example circuits (coupled coplanar stripline and microstrip structures) are studied to examine the accuracy and efficiency of the present method.
Mitsuhiko OGIHARA Takatoku SHIMIZU Masumi TANINAKA Yukio NAKAMURA Ichimatsu ABIKO
We developed a 1200 dots-per-inch light emitting diode array (1200 dpi LED array) chip using a GaAs0.8 P0.2 epitaxial substrate for the first time. One LED array chip consists of 256 LEDs. In general, LED arrays are fabricated by vapor-phase zinc diffusion. From the viewpoint that shallow junctions should be formed to fabricate a very high-density LED array, solid-phase diffusion seems to be more suitable. We fabricated the LED array using selectively-masked solid-phase zinc diffusion, and the diffusion depth was controlled at 1 µm. The diffusion depth was uniform under the diffusion window. The ratio of the length of lateral diffusion to the diffusion depth was about 1.7. These features imply that Zn diffusion was well controlled. In the Zn diffusion, the carrier concentration in the Zn diffusion region was high enough and the sheet resistance of the diffusion region with a diffusion depth of 1 µm was low enough to obtain a sufficient level of emitted light power. The results of performance tests showed that the characteristics of the LED array chip are satisfactory for application in optical printer print heads, because of the array's highly-resolved near-field pattern characteristic, ample emitted light power, low emitted-light-power deviation, and long life.
Kiyotoshi YASUMOTO Mayumi MATSUNAGA
The dispersion characteristics of two nonidentical coupled microstrip lines and N identical coupled microstrip lines are analyzed using the coupled-mode theory combined with Galerkin's moment method in spectral domain. In this approach, the solutions to the original coupled microstrips are approximated by a linear combination of eigenmode solutions associated with the isolated single microstrip, and the reciprocity relation is used to derive the coupled-mode equations. The coupling coefficients are given by the simple overlap integrals in spectral domain between the eigenmode fields and currents of the individual microstrips. It is shown that the numerical results are in very good agreement with those obtained by the direct Galerkin's moment method over a broad range of weak to moderately strong coupling.
Qing HAN Toshinori KOGAMI Yoshiro TOMABECHI Kazuhito MATSUMURA
Resonance characteristics of a coupled dielectric resonator which consists of a Whispering Gallery mode dielectric disk resonator and a ring resonator located eccentrically are analyzed. New analytical results of resonance characteristic based on the distributed coupling phenomena between the disk and the ring are obtained. The resonance performances have also been verified experimentally on X band model. We have found that Free Spectral Range of the coupled resonator is several times larger than that of the single disk resonator and the single ring resonator, respectively. As a result, the eccentric coupled resonator discussed in this paper can be used as a frequency selective element in millimeter wave integrated circuits.
Toshinori YAMASAKI Tetsuo HATTORI
We developed the computer calligraphy, that is, a computer formation of brush-written Kanji characters using calligraphic knowledge. The style of brush handwriting depends mainly on the way of using a writing brush. Brush writing skills include the direction of brush at the beginning, curvature and turning the brush, the brush-up at the termination point in a stroke. We make up the calligraphic knowledge base according to the above mentioned brush writing skills. For simulating real brush movement, we represent the brush contact form that is the brush shape on the writing plane as a brush-touch. The system can control the size and direction of this brush-touch during the brush simulation. The system simulates the real brush writing to move the brush-touch along the skeleton letter shape in the standard database. We get the brush written Kanji from the locus of the brush-touch movement. We can extend this system to the new on line training system for brush writing using the simulation of brushtouch movement modified by the pressure, speed and rotation of the writing brush, and the skeleton letters written by a learner from the tablet. This system is also useful for students learning how to write Japanese letters beautifully with brush.
Gerardo AYALA San Martin Yoneo YANO
Effective collaboration in ComputerSupported Collaborative Learning (CSCL) environments is nowadays an important research topic. It deals with two main problems: the configuration of an appropriate learning group and the intelligent task distribution in the practice of domain knowledge. In order to have effective collaboration in a CSCL environment, we have proposed a set of software agents that assist the learners to select their learning tasks, according to their capabilities and the possibilities of collaboration between them. In this paper the cooperation among software agents is presented as the key point for effective collaboration in CSCL environments. In this kind of environments the learner must have enough collaboration and learning possibilities, being motivated with the experience of social knowledge construction. We have been working on the problem of effective collaboration in CSCL environments, based on the cooperation between software agents developed for GRACILE, our Japanese Grammar CSCL environment. Before, we have proposed intelligent agents that assist the learners. Our next step has been the design of the cooperation between agents in order to create possibilities of effective collaboration in a virtual community of practice. In order to evaluate the performance of our agents we made several simulations. The results obtained from these simulations of diverse types of learning groups provided us with guidelines for the configuration of groups in CSCL environments, where effective collaboration is possible.
The purpose of our study is to develop an intelligent adaptive instruction system that manages intelligently the learner's estimated knowledge structure and optimizes the selection of problems according to his/her knowledge structures. The system adopts the dynamic problems of high school physics as a material of study, and is intended to operate on a UNIX Work Station. For these purposes, the system is composed of three parts, 1) interface part, 2) problem solving expert part, and 3) optimization expert system part for problem selection. The main feature of our system is that both knowledge structures of learner and teacher are represented by structural graph, and the problem selection process is controlled by the relationship between the learner's knowledge structure and the teacher's knowledge structure. In our system the relationship between these two knowledge structures is handled in the optimization expert system part for problem selection. In this paper the theory of the optimization expert system part for problem selection is described, and the effectiveness of this part is clarified through a simulation experiment of the originally defined matching coefficient.
Kohro TAKAHASHI Sakae NAKAJIMA Satoshi TAKEUCHI
A light emitting diode (LED) array unit for use as a light source in isolated power transmission and a display panel was fabricated using LED chips mounted on a silicon microreflector. The reflector was formed on a (100) silicon wafer by anisotropic chemical etching. An isolated power supply consisting of an infrared LED array unit and single silicon crystal solar cells had a maximum transmission efficiency of 2.3%. The silicon microreflector absorbs the heat generated by the LED chips and improves their light directive characteristics. A small, high-resolution, full color LED display panel can also be constructed using LED array units fabricated on silicon microreflectors. The LEDs in a unit are arrayed with a matrix structure and the electric contacts between the LED chips, the reflector and the upper cover glass are formed using conducting silver resin.
Seiichiro MORO Yoshifumi NISHIO Shinsaku MORI
When N oscillators are coupled by one resistor, we can see N-phase oscillation, because the system tends to minimize the current through the coupling resistor. Moreover, when the hard oscillators are coupled, we can see N, N - 1, , 3, 2-phase oscillation and get much more phase states. In this study, the two types of coupled oscillators networks with third and fifth-power nonlinear characteristics are proposed. One network has two-dimensional hexagonal structure and the other has two-dimensional lattice structure. In the hexagonal circuit, adjacent three oscillators are coupled by one coupling resistor. On the other hand, in the lattice circuit, four oscillators are coupled by one coupling resistor. In this paper we confirm the phenomena seen in the proposed networks by circuit experiments and numerical calculations. In the system with third-power nonlinear characteristics, we can see the phase patterns based on 3-phase oscillation in the hexagonal circuit, and based on anti-phase oscillation in lattice circuit. In the system with fifth-power nonlinear characteristics, we can see the phase patterns based on 3-phase and anti-phase oscillation in both hexagonal and lattice circuits. In particular, in these networks, we can see not only the synchronization based on 3-phase and anti-phase oscillation but the synchronization which is not based on 3-phase and anti-phase oscillation.
Kaoru KUROSAWA Yutaka KATAYAMA Wakaha OGATA
This paper presents a reshufflable and laziness tolerant mental card game protocol. First, our protocol can reshuffle any subset of cards. For example, some opened cards and some face down cards can be shuffled together. Next, we consider two types of honest players, currently active and currently nonactive. A player is currently nonactive if he dropped out the game or he declared "pass" and has not declared "rejoin" yet. In the proposed protocol, if more than half of the players are currently active, they can play the game. In this case, the privacy of the currently nonactive players are kept secret.
Tatsuya SHIMIZU Masashi NAKATSUGAWA Hiroyuki OHTSUKA
This paper presents the performance of a proposed GaAs MESFET photodetector with wide drain-to-gate distances for improving the optical coupling efficiency in subcarrier optical transmission. Principle and design parameters of the proposed MESFET are described. Link gain, CNR, and BER, are experimentally investigated as functions of the drain-to-gate distance. It is experimentally found that the proposed MESFET improves the link gain by 8.5 dB compared to the conventional structure at the subcarrier frequency of 140 MHz. Discussions are also included compared to PIN-PD.
Yoshitaka FUJIWARA Shin-ichiro OKADA Hiroyuki TAKADOI Toshiharu MATSUNISHI Hiroshi OHKAMA
In a conventional client-server system using the satellite communications, the responsibility of the system to the client user is considerably degraded by the long transmission time between the satellite and the ground terminal as well as the relatively low data transmission rate in comparison with the ground transmission line as the Ethernet. In this paper, a new client-server control, VEEC, is proposed to solve the problem. As a result of the experimental performance studies, it is clarified that the responsibility in the client is remarkably improved when the pre-fetching mechanism of VEEC works efficiently.
Tomohiro SEKI Kazuhiro UEHARA Kenichi KAGOSHIMA
We propose a novel feeding circuit for a 30 GHz planar multibeam antenna applied to high-speed wireless communication systems. The feeding circuit is a bi-layer 8-port Butler matrix constructed with phase adjusted slot-coupled hybrids and branch-line hybrids. The new circuit configuration eliminates troublesome vias and line crossings, so it can be manufactured by traditional photolithograph. The feeding circuit is designed by using the spectral domain moment method considering bonding film effects. A prototype of a multibeam antenna which has seven pencil-beams with 10 beamwidths is manufactured and tested; the beam scan angle error is less than 3 at 30 GHz.
Cheol-Hee LEE Jae-Yoon SIM Hong-June PARK
A current controlled CMOS output driver was designed by using a temperature-insensitive reference current generator. It eliminates the need for overdesign of the driver transistor size to meet the delay specification at high temperature. Comparison with the conventional CMOS output driver with the same transistor size showed that the ground bounce noise was reduced by 2.5 times and the delay time was increased by 1.4 times, at 25 for 50pF load. The temperature variations of the DC pull-up and pull-down currents of the new output driver were 4% within the temperature range from -15 to 125 compared to the variations of 40 and 60% for pull-up and pull-down respectively for the conventional output driver. The temperature insensitivity of the reference current generator was achieved by multiplying two current components. one which is proportional to mobility and the other which is inversely proportional to mobility, by using a CMOS square root circuit. The temperature variation of the DC output current of the reference current generator alone was 0.77% within the entire temperature range from -15 to 125.
Tatsuya MIHARA Hiroshi KAWAKAMI
Synchronization and chaos of the oscillator circuit that is composed of two Duffing-Rayleigh oscillators coupled by resistor are investigated. The characteristic feature of this system is that the cubic nonlinear restoring force of each oscillator. The restoring force causes the Neimark-Sacker bifurcation with various synchronizations in the parameter plane. We clarify the bifurcation structure related with this nonlinear phenomenon, and study the chaotic state and its bifurcation process. Especially, we deals with the case that the symmetrical property is broken by changing system parameters.
Jun KISHIDA Csaba REKECZKY Yoshifumi NISHIO Akio USHIDA
In this article, a new analogic CNN algorithm to extract features of postage stamps in gray-scale images Is introduced. The Gradient Controlled Diffusion method plays an important role in the approach. In our algorithm, it is used for smoothing and separating Arabic figures drawn with a color which is similar to the background color. We extract Arabic figures in postage stamps by combining Gradient Controlled Diffusion with nearest neighbor linear CNN template and logic operations. Applying the feature extraction algorithm to different test images it has been verified that it is also effective in complex segmentation problems
Yoshinobu SETOU Yoshifumi NISHIO Akio USHIDA
In this study, some oscillators with different oscillation frequencies, N - 1 oscillators have the same oscillation frequency and only the Nth oscillator has different frequency, coupled by a resistor are investigated. At first we consider nonresonance. By carrying out circuit experiments and computer calculations, we observe that oscillation of the Nth oscillator stops in some range of the frequency ratio and that others are synchronized as if the Nth oscillator does not exist. These phenomena are also analyzed theoretically by using the averaging method. Secondly, we investigate the resonance region where the fiequency ratio is nearly equal to 1. For this region we can observe interesting double-mode oscillation, that is, synchronization of envelopes of the double-mode oscillation and change of oscillation amplitude of the Nth oscillator.
Hiroyuki KITAJIMA Tetsuya YOSHINAGA Hiroshi KAWAKAMI
We investigate bifurcations of the periodic solution observed in a phase converter circuit. The system equations can be considered as a nonlinear coupled system with Duffing's equation and an equation describing a parametric excitation circuit. In this system there are two types of solutions. One is with x = y = 0 which is the same as the solution of Duffing's equation (correspond to uncoupled case), another solution is with xy0. We obtain bifurcation sets of both solutions and discuss how does the coupling change the bifurcation structure. From numerical analysis we obtain a codimension two bifurcation which is intersection of double period-doubling bifurcations. Pericdic solutions generated by these bifurcations become chaotic states through a cascade of codimension three bifurcations which are intersections of D-type of branchings and period-doubling bifurcations.
Yoshinori UZAWA Akira KAWAKAMI Zhen WANG Takashi NOGUCHI
A quasi-optical Superconductor-Insulator-Superconductor (SIS) mixer has been designed and tested in the 270-GHz band. The mixer used a substrate-lens-coupled log-periodic antenna and a tuning circuit for RF matching. The antenna is planar and self-complementary, and has a frequency-independent impedance of around 114 Ω over several octaves. The tuning circuit consists of two Nb/AIOx/Nb tunnel junctions separated by inductance for tuning out the junction capacitances and a λ/4 impedance transformer for matching the resistance of the two-junction circuit to the antenna impedance. The IF output from the mixer is brought out in a balanced method at each edge of the antenna, and is coupled to a low noise amplifier through a balun transformer using a 180-degree hybrid coupler for broadband IF matching. Double sideband receiver noise temperatures, determined from experimental Y-factor measurements, are about 150 K across the majority of the desired operating frequency band. The minimum receiver noise temperature of 120 K was measured at 263 GHz, which is as low as that of waveguide receivers. At this frequency, measurement of the noise contribution to the receiver results in input losses of 90 K, mixer noise of 17 K, and multiplied IF noise of 13 K. We found that the major sources of noise in our quasi-optical receiver were the optical losses.