The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LED(737hit)

661-680hit(737hit)

  • Quasi-Optical SIS Mixers with Nb/AIOx/Nb Tunnel Junctions in the 270-GHz Band

    Yoshinori UZAWA  Akira KAWAKAMI  Zhen WANG  Takashi NOGUCHI  

     
    PAPER-Analog applications

      Vol:
    E79-C No:9
      Page(s):
    1237-1241

    A quasi-optical Superconductor-Insulator-Superconductor (SIS) mixer has been designed and tested in the 270-GHz band. The mixer used a substrate-lens-coupled log-periodic antenna and a tuning circuit for RF matching. The antenna is planar and self-complementary, and has a frequency-independent impedance of around 114 Ω over several octaves. The tuning circuit consists of two Nb/AIOx/Nb tunnel junctions separated by inductance for tuning out the junction capacitances and a λ/4 impedance transformer for matching the resistance of the two-junction circuit to the antenna impedance. The IF output from the mixer is brought out in a balanced method at each edge of the antenna, and is coupled to a low noise amplifier through a balun transformer using a 180-degree hybrid coupler for broadband IF matching. Double sideband receiver noise temperatures, determined from experimental Y-factor measurements, are about 150 K across the majority of the desired operating frequency band. The minimum receiver noise temperature of 120 K was measured at 263 GHz, which is as low as that of waveguide receivers. At this frequency, measurement of the noise contribution to the receiver results in input losses of 90 K, mixer noise of 17 K, and multiplied IF noise of 13 K. We found that the major sources of noise in our quasi-optical receiver were the optical losses.

  • Study of a Low Voltage, Low Power and High Frequency CMOS VCO Circuit

    Yasuhiro SUGIMOTO  Takaaki TSUJI  

     
    LETTER

      Vol:
    E79-A No:5
      Page(s):
    630-633

    This paper examines the feasibility of a high frequency (moro than 1 GHz) ring-oscillator-type CMOS VCO, able to maintain a good linearity between the oscillator output frequency and control voltage, while preserving low voltage and low power operation capabilities. A CMOS VCO circuit, with a newly developed corrent-controlled delay cell and an architecture combining the transitions of each delay cell output, with high-frequency operation, was designed and simulated using the CMOS 0.6 µm device paramenters. We analyzed the generation of unnecessary harmonics and sub-harmonics when a delay cell's propagation delay time varied. The simulation indicated that a CMOS VCO with a frequency range of 200 MHz to 1.4 GHz, a power dissipation of 8.5 mW at 900 MHz from a 3 V power supply, and an operation voltage of 1 V to 3 V can be implemented on a chip.

  • A Sender-Initiated Adaptive Load Balancing Scheme Based on Predictable State Knowledge*

    Gil-Haeng LEE  Heung-Kyu LEE  Jung-Wan CHO  

     
    PAPER-Sofware System

      Vol:
    E79-D No:3
      Page(s):
    209-221

    In an adaptive load balancing, the location policy to determine a destination node for transferring tasks can be classified into three categories: dynamic selection, random selection, and state polling. The dynamic selection immediately determines a destination node by exploiting the state information broadcasted from other nodes. It not only requires the overheads of collecting the state information, but may cause an unpredictable behavior unless the state information is accurate. Also, it may not guarantee even load distribution. The random selection determines a destination node at random. The state polling determines a destination node by polling other nodes. It may cause some problems such as useless polling, unachievable load balancing, and system instability. A new Sender-initiated Adaptive LOad balancing scheme (SALO) is presented to remedy the above problems. It determines a destination node by exploiting the predictable state knowledge and by polling the destination node. It can determine a good destination with minimal useless polling and guarantee even load distribution. Also, it has an efficient mechanism and good data structure to collect the state information simply. An analytic model is developed to compare with other well known schemes. The validity of the model is checked with an event-driven simulation. With the model and the simulation result, it is shown that SALO yields a significant improvement over other schemes, especially at high system loads.

  • Coupling Coefficients and Coupled Power Equations Describing the Crosstalk in an Image Fiber

    Akira KOMIYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E79-C No:2
      Page(s):
    243-248

    One of coupling coefficients appearing in the coupled power equations describing the crosstalk in an image fiber is derived based on the coupled mode theory. Cores arranged in the cross-section of the fiber differ randomly to the degree of several percent in size and consequently modes propagating along the cores differ randomly. Random fluctuations of the propagation constants of modes cause the random transfer process of power between the cores, whereas contributions of the random fluctuations of the mode coupling coefficients to the statistical process can be neglected. The coupling coefficient is described as the ratio of the power transfer ratio to the coupling length for two cores with slightly different radii characterizing the random cores. The theoretical results are in good agreement with measurement results except near cutoff.

  • Multimode Chaos in Two Coupled Chaotic Oscillators with Hard Nonlinearities

    Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E79-A No:2
      Page(s):
    227-232

    In this study, multimode chaos observed from two coupled chaotic oscillators with hard nonlinearities is investigated. At first, a simple chaotic oscillator with hard nonlinearities is realized. It is confirmed that in this chaotic oscillator the origin is always asymptotically stable and that the solution, which is excited by giving relatively large initial conditions, undergoes period-doubling bifurcations and bifurcates to chaos. Next, the coexistence of four different modes of oscillations are observed from two coupled chaotic oscillators with hard nonlinearities by both of circuit experiments and computer calculations. One of the modes of oscillation is a nonresonant double-mode oscillation and this oscillation is stably generated even in the case that oscillation is chaotic. Namely, for this oscillation mode, chaotic oscillation and periodic oscillation can be simultaneously excited. This phenomenon has not been reported yet, and we name this phenomenon as double-mode chaos. Finally, the beat frequency of the double-mode chaos is confirmed to be changed by varying the value of the coupling capacitor.

  • BER Performance of Optically Controlled MESFETs as Photodetectors

    Tatsuya SHIMIZU  Hiroyuki OHTSUKA  Kojiro ARAKI  

     
    PAPER-Optomicrowave Devices

      Vol:
    E79-C No:1
      Page(s):
    46-51

    This paper presents the performance of optically controlled MESFETs as photodetectors. The optical performance characteristics such as optic-to-electric responsivity, and BER for a π/4-QPSK signal are experimentally investigated. Measurements are performed by using MMIC compatible MESFETs. Experimental results are also evaluated in comparison with calculated PIN-PD limit. Optic-to-electric responsivity has high gain at lower received optical powers. It is shown experimentally that MESFET photodetectors improve the permissible optical power by 6 dB compared to the PIN-PD limit. Optically controlled MESFETs will provide a novel receivers for fiber-optic systems.

  • Frequency Characteristics of a Beamforming Network of an Optically Controlled Array Antenna and Its Radiation Pattern Measurements

    Kenichi YAMADA  Isamu CHIBA  Yoshio KARASAWA  

     
    PAPER-Optically Controlled Beam Forming Networks

      Vol:
    E79-C No:1
      Page(s):
    68-73

    As an optically controlled array antenna, a "two-laser type" using two laser diodes whose frequency difference is set to the desired microwave frequency has been proposed. In this paper, we confirm experimentally that the beamforming network of the two-laser type array antenna has very broadband characteristics by measuring the amplitude and phase of microwave signals at 1.5 GHz, 10 GHz and 20 GHz. Using the optically controlled beam forming network, the radiation pattern of a 4-element linear array antenna was measured at 1.5 GHz.

  • An Adaptive Coding-Based Selection Scheme for a Communication Aid

    Satoshi KOYAMA  

     
    LETTER

      Vol:
    E78-A No:11
      Page(s):
    1542-1544

    This paper discusses a coding-based selection approach to a communication aid for the severely motor disabled. Several approaches including row-column scanning are briefly described, then we propose a new selection scheme based on the theory of adaptive coding. They are compared each other with respect to average switch activations in generating some text samples.

  • Synchronization Phenomena in RC Oscillators Coupled by One Resistor

    Seiichiro MORO  Yoshifumi NISHIO  Shinsaku MORI  

     
    LETTER-Neural Networks

      Vol:
    E78-A No:10
      Page(s):
    1435-1439

    In this study, we propose a system of N Wien-bridge oscillators with the same natural frequency coupled by one resistor, and investigate synchronization phenomena in the proposed system. Because the structure of the system is different from that of LC oscillators systems proposed in our previous works, this system cannot exhibit N-phase oscillations but 3-phase and in-phase oscillations. Also in this system, we can get an extremely large number of steady phase states by changing the initial states. In particular, when N is not so large, we can get more phase states in this system than that of the LC oscillators systems. Because this system does not include any inductors and is strong against phase error this system is much more suitable for applications on VLSI compared with coupled system of van der Pol type LC oscillators.

  • Bifurcations in a Coupled Rössler System

    Tetsuya YOSHINAGA  Hiroyuki KITAJIMA  Hiroshi KAWAKAMI  

     
    PAPER

      Vol:
    E78-A No:10
      Page(s):
    1276-1280

    We propose an equivalent circuit model described by the Rössler equation. Then we can consider a coupled Rössler system with a physical meaning on the connection. We consider an oscillatory circuit such that two identical Rössler circuits are coupled by a resistor. We have studied three routes to entirely and almost synchronized chaotic attractors from phase-locked periodic oscillations. Moreover, to simplify understanding of synchronization phenomena in the coupled Rössler system, we investigate a mutually coupled map that shows analogous locking properties to the coupled Rössler System.

  • Concepts and Methodologies for Knowledge-Based Program Understanding--The ALPUS's Approach--

    Haruki UENO  

     
    PAPER-Methodologies

      Vol:
    E78-D No:9
      Page(s):
    1108-1117

    The background concepts and methodologies of the knowledge-based program understander ALPUS is discussed. ALPUS understands user's buggy Pascal programs using four kinds of programming knowledge: the knowledge on algorithms, programming techniques, the Pascal language, and logical bugs. The knowledge on algorithms, the key knowledge, is represented in a form of hierarchical data structure called Hierarchical Procedure Graph (HPG). In HPG each node represents a chunk of operations called process," which is consisted of sub-processes. The other knowledge is maintained as independent knowledge bases and linked to associated processes of the HPG. The knowledge about bugs acquired by cognitive experiment is grouped into three categories: bugs on algorithms, programming techniques, and the Pascal language, and connected to associated elements of programming knowledge respectively. ALPUS tries to understand user's buggy programs, detects logical bugs, infers user's intentions, and gives advices for fixing bugs. Program understanding is achieved by three steps: normalization, variable identification, and process and technique identification. Normalization results in improving flexibility of understanding. Variable, process and technique identifications are achieved by knowledge-based pattern matching. Intentions are inferred by means of information attached to buggy patterns. The result of comprehension is reported to a user (i.e., student). Experimental results using Quicksort programs written by students show that the HPG formalism is quite powerful in understanding algorithm-oriented programs. The ALPUS's way of program comprehension is useful in the situation of programming education in an intermediate class of an engineering school. The ALPUS system is a subsystem of the intelligent programming environment INTELLITUTOR for learning programming, which was implemented in the frame-based knowledge engineering environment ZERO on a UNIX workstation.

  • Case Histories on Knowledge-Based Design Systems for LSI and Software

    Masanobu WATANABE  Toru YAMANOUCHI  Masahiko IWAMOTO  Satoru FUJITA  

     
    PAPER-Applications

      Vol:
    E78-D No:9
      Page(s):
    1164-1170

    This paper describes, from a system architectural viewpoint, how knowledge-based technologies have been utilized in developing EXLOG (an LSI circuit synthesis system) and SOFTEX (a software synthesis system) inside the authors' projects. Although the system architectures for EXLOG and SOFTEX started from the same production systems, consisting of transformation rules in the middle of the 1980's, both branched off in different directions in the 1990's. Based on experiences with EXLOG and SOFTEX, the differences between LSI and software design models are discussed, and the future directions are indicated for the knowledge-based design system architectures.

  • A Requirement Description Approach in Natural Language Based on Communication Service Knowledge

    Yoshizumi KOBAYASHI  Tadashi OHTA  Nobuyoshi TERASHIMA  

     
    PAPER-Applications

      Vol:
    E78-D No:9
      Page(s):
    1156-1163

    This paper proposes a requirement description and elicitation approach for communication services. Requirements are described in natural language, refined with a knowledge base, and converted to a formal language for program generation. A model for communication services is made as a set of three items: terminal state, terminal action and the response of the communication system to the action. This set, in turn, corresponds to natural language syntax that expresses two conditions (terminal state and action) and their result. These conditions and result are expressed as a sequence of simple sentences that describe the relationship between a terminal and a communication system. Thus, by defining such a description style to reflect the features of communication services, it should be possible to achieve both a high level of description and mechanical processing capabilities at the same time. However, requirement descriptions usually include omission and inconsistency. This problem cannot be solved by merely introducing natural language for the descriptions. Knowledge about the target domain of requirements is needed to resolve it. This paper reports on a knowledge base that stores constraints existing between conditions and results in communication services. This knowledge base is shown to be effective in supplementing omissions and resolving inconsistency. This paper also presents a technique for converting the elicited requirements in natural language to descriptions in a formal language that can be used to generate a program.

  • Conceptual Graph Programs and Their Declarative Semantics

    Bikash Chandra GHOSH  Vilas WUWONGSE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E78-D No:9
      Page(s):
    1208-1217

    Conceptual graph formalism is a knowledge representation language in AI based on a graphical form of logic. Although logic is the basis of the conceptual graph theory, there is a strongly felt absence of a formal treatment of conceptual graphs as a logic programming language. In this paper, we develop the notion of a conceptual graph program as a kind of graph-based order-sorted logic program. First, we define the syntax of the conceptual graph program by specifying its major syntactic elements. Then, we develop a kind of model theoretic semantics and fixpoint semantics of the conceptual graph program. Finally, we show that the two types of semantics coincide for the conceptual graph programs.

  • Resistively Coupled Oscillators with Hybrid Connection

    Mozammel HOQUE  Hiroshi KAWAKAMI  

     
    LETTER-Nonlinear Problems

      Vol:
    E78-A No:9
      Page(s):
    1253-1256

    In this letter we propose a novel method of connection, called the hybrid connection, and find that a resistively coupled oscillator with hybrid connection has stable in-phase and anti-phase synchronized oscillations. Averaging method is used to investigate the stability of the synchronized oscillations. The theory is verified by the experimental results.

  • Design of the Basic Cell and Metallized RAM for 0.5 µm CMOS Gate Array

    Yoji NISHIO  Hideo HARA  Masahiro IWAMURA  Yasuo KAMINAGA  Katsunori KOIKE  Kosaku HIROSE  Takayuki NOTO  Satoshi OGUCHI  Yoshihiko YAMAMOTO  Takeshi ONO  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:9
      Page(s):
    1255-1262

    A 0.5 µm CMOS embedded function type gate array family with high speed modules was developed. This family has: an effective basic cell; high speed, compiled type metallized and diffused RAMs; PLL (Phase Locked Loop); and GTL (Gunning Transceiver Logic) to realize operation of over 100 MHz at 3.3 V. This paper describes the basic cell architecture and the compiled type metallized RAM. A divided MOS transistor type basic cell is effective for metallized modules such as metallized RAM and internal logic circuits. The appropriate basic cell size (height) can be decided from the viewpoints of the relationship between the number of usable basic cells and the basic cell height, and the logic circuit speed. Propagation delay time of the 2-input NAND is 200 ps at a standard load of fan out=2 and metal length=1.4 mm. For the universal ASIC, the compiled RAM is indispensable. Single port and multi-port metallized RAMs which are structured by using the basic cells are discussed. The new single port memory cell circuit which has a differential write and single end read operating method is introduced. This memory cell circuit can be realized using one basic cell. The diffused layer region of the NMOS transfer gates for the read operation is shared between neighbor memory cells. So, the capacitance of the bit line becomes smaller, and a high speed access time can be achieved. The measured access time of 1 kbits is 4.2 ns. The new multi-port memory cell circuits which have a single end write and single end read operating method are introduced. The read operating method is the same as that of the single port memory cell circuit. The access time shows very high speed operation comparable to that of the single port memory. This 3F (Flexible, Fast, and Friendly) ASIC family can be applied to high speed processors in workstations and graphics equipment.

  • Learning Levels in Intelligent Tutoring Systems

    Vadim L. STEFANUK  

     
    PAPER-Methodologies

      Vol:
    E78-D No:9
      Page(s):
    1103-1107

    Intelligent Tutoring Systems (ITS) represents a wide class of computer based tutoring systems, designed with an extensive use of the technology of modern Artificial Intelligence. Successful applications of various expert systems and other knowledge based systems of AI gave rise to a new wave of interests to ITS. Yet, many authors conclude that practically valuable achievements of ITS are rather modest despite the relatively long history of attempts to use knowledge based systems for tutoring. It is advocated in this paper that some basic obstacles for designing really successful ITS are due to the lack of well understood and sound models of the education process. The paper proposes to overcome these problems by borrowing the required models from AI and adjacent fields. In particular, the concept of Learning Levels from AI might be very useful both for giving a valuable retrospective analysis of computer based tutoring and for suggestion of some perspective directions in the field of ITS.

  • A Slot Coupled Microstrip Antenna with a Multi-Layer Thick Ground Plane

    Kazunori TAKEUCHI  Isamu CHIBA  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    988-994

    A novel thick ground plane is proposed as a support for a slot-coupled microstrip antenna and as a heat sink for an MMIC installed on the back plane of the active array antenna. A multi-layer structure of ground planes is also studied for the benefit of easy installation of MMICs. The influence of this thick metal ground plane with a mono- and multi-layer has been investigated in detail. Both measured and calculated results of VSWR and calculated results of the back lobe are shown in detail. The calculated results of VSWR agree well with the measurements. It is made clear that the thickness of the ground plane can be extended to twenty times that of the antenna substrate while maintaining the antenna's performance. An LNA composing an MMIC was developed, attached to the back of the antenna, and operated at 23 GHz. The measured results of this active element agree well with calculated ones and confirm the applicability of the novel design.

  • Thin-Film Slot Antenna for 700 GHz Submillimeter Wave Radiation

    Takashi SHIMIZU  yasuhiko ABE  Yoshizumi YASUOKA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1002-1006

    Thin-film slot antennas for 700 GHz submillimeter wave radiation were designed on the basis of the experimental results obtained at microwave frequency regions, and fabricated with photolithographic methods. The antenna patterns measured for the HCOOH laser radiation agreed well with the theoretical antenna pattern. This shows that the fabricated antenna works as a slot antenna in the 700 GHz submillimeter region.

  • Characterization of Single and Coupled Microstrip Lines Covered with Protective Dielectric Film

    Kazuhiko ATSUKI  Keren LI  Shoichiro YAMAGUCHI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1095-1099

    In this paper, we presented an analysis of single and coupled microstrip lines covered with protective dielectric film which is usually used in the microwave integrated circuits. The method employed in the characterization is called partial-boundary element method (p-BEM). The p-BEM provides an efficient means to the analysis of the structures with multilayered media or covered with protective dielectric film. The numerical results show that by changing the thickness of the protective dielectric films such as SiO2, Si and Polyimide covered on these lines on a GaAs substrate, the coupled microstrip lines vary within 10% on the characteristic impedance and within 25% on the effective dielectric constant for the odd mode of coupled microstrip line, respectively, in comparison with the structures without the protective dielectric film. In contrast, the single microstrip lines vary within 4% on the characteristic impedance and within 8% on the effective dielectric constant, respectively. The protective dielectric film affects the odd mode of the coupled lines more strongly than the even mode and the characteristics of the single microstrip lines.

661-680hit(737hit)