The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MOS analog integrated circuits(4hit)

1-4hit
  • A CMOS Low Dropout Regulator with Extended Stable Region for the Effective Series Resistance of the Output Capacitor

    Hsuan-I PAN  Chern-Lin CHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:8
      Page(s):
    1356-1364

    In this paper, a new compensation scheme and a corresponding pass element structure for a CMOS low-dropout regulator (LDO) are presented. The proposed approach effectively alleviates the strict stability constraint on the ESR of the output capacitor. Stability of a CMOS LDO with the conventional compensation requires the effective series resistance (ESR) of the output capacitor in a tunnel-like region. With the proposed design approach, an LDO can be stable using an output capacitor without ESR. A 2.5 V/150 mA LDO has been implemented using a 0.5-µm 1P2M CMOS process. The experimental results illustrate that the proposed LDO is stable with an output capacitor of 0.33 µF and no ESR.

  • Low-Voltage, Low-Distortion and Rail-to-Rail CMOS Sample and Hold Circuit

    Koichi TANNO  Kiminobu SATO  Hisashi TANAKA  Okihiko ISHIZUKA  

     
    LETTER

      Vol:
    E88-A No:10
      Page(s):
    2696-2698

    In this letter, we propose a sample and hold circuit (S/H circuit) with the clock boost technique and the input signal tracking technique. The proposed circuit block generates the clock with the amplitude of VDD + vin, and the clock is used to control the MOS switch. By applying this circuit to a S/H circuit, we can deal with the rail-to-rail signal with maintaining low distortion. Furthermore, the hold error caused by the charge injection and the clock feedthrough can be also reduced by using the dummy switch. The Star-HSPICE simulation results are reported in this letter.

  • Combiner-Based MOS OTAs

    Koichi TANNO  Kenya KONDO  Okihiko ISHIZUKA  Takako TOYAMA  

     
    LETTER-Analog Signal Processing

      Vol:
    E88-A No:6
      Page(s):
    1622-1625

    In this letter, two kinds of MOS operational transconductance amplifiers (OTAs) based on combiners are presented. Each OTA has the following advantages; one of the proposed OTAs (OTA-1) can be operated at low supply voltage and the other OTA (OTA-2) has wide bandwidth. Through HSPICE simulations with a standard 0.35 µm CMOS device parameters, the operation under the supply voltage of 1.5 V for OTA-1 and the -3 dB bandwidth of several gigahertz for OTA-2 are confirmed.

  • Pulse Modulation Techniques for Nonlinear Dynamical Systems and a CMOS Chaos Circuit with Arbitrary 1-D Maps

    Takashi MORIE  Kenichi MURAKOSHI  Makoto NAGATA  Atsushi IWATA  

     
    PAPER

      Vol:
    E87-C No:11
      Page(s):
    1856-1862

    This paper presents circuit techniques using pulse-width and pulse-phase modulation (PWM/PPM) approaches for VLSI implementation of nonlinear dynamical systems. The proposed circuits implement discrete-time continuous-state dynamics by means of analog processing in a time domain, and also approximately implement continuous-time dynamics. Arbitrary nonlinear transformation functions are generated by the process in which a PPM signal samples a voltage or current source whose waveform in the time domain has the same shape as the desired transformation function. Because a shared arbitrary nonlinear voltage or current waveform generator can be constructed by digital circuits and D/A converters, high flexibility and real-time controllability are achieved. By using one of these new techniques, we have designed and fabricated a CMOS chaos circuit with arbitrary 1-D maps using a 0.6 µm CMOS process, and demonstrate from the experimental results that the new chaos circuit successfully generated various chaos with 7.5-7.8 bit precision by using logistic, tent and chaotic-neuron maps.