The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

3121-3140hit(3945hit)

  • Estimation of the AR Order of an Inhomogeneous AR Model with Input Expanded by a Set of Basis

    Yukiko YOKOYAMA  Mineo KUMAZAWA  Naoki MIKAMI  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:3
      Page(s):
    551-557

    We proposed a new model for non-stationary time series analysis based on an inhomogeneous AR (autoregressive) equation. Time series data is regarded as white noise plus output of an AR system excited by non-stationary input sequence represented in terms of a set of basis. A method of model parameter estimation was presented when the set of basis and the AR order are given. In order to extend the method, we present a method of parameter estimation when the AR order is unknown: we set two new criteria 1) minimize the root mean square error of the output sequence, and 2) minimize scattering of estimated frequencies. Then, we derive a procedure for the estimation of the AR order and the other unknown parameters.

  • What Structural Features Make Graph Problems to Have Efficient Parallel Algorithms? --Using Outerplanar Graphs, Trapezoid Graphs and In-Tournament Graphs as Examples--

    Shigeru MASUYAMA  Shin-ichi NAKAYAMA  

     
    INVITED SURVEY PAPER-Parallel and Distributed Algorithms

      Vol:
    E83-D No:3
      Page(s):
    541-549

    This paper analyzes what structural features of graph problems allow efficient parallel algorithms. We survey some parallel algorithms for typical problems on three kinds of graphs, outerplanar graphs, trapezoid graphs and in-tournament graphs. Our results on the shortest path problem, the longest path problem and the maximum flow problem on outerplanar graphs, the minimum-weight connected dominating set problem and the coloring problem on trapezoid graphs and Hamiltonian path and Hamiltonian cycle problem on in-tournament graphs are adopted as working examples.

  • Minimum Number of Comparators in (6,6)-Merging Network

    Koichi YAMAZAKI  Hibiki MIZUNO  Kazuhisa MASUDA  Shigeki IWATA  

     
    PAPER-Theory/Models of Computation

      Vol:
    E83-D No:2
      Page(s):
    137-141

    The minimum number of comparators in a (6,6)-merging network is shown to be 17. The number has been known to be either 16 or 17 [See Knuth, The Art of Computer Programming Vol. 3: Sorting and Searching, p. 230]. Minimum numbers for (n,n)-merging netwerks, 1 n 9, n 6, were already known. The problem had been open for more than two decades.

  • A Phase Compensation Technique without Capacitors for the CMOS Circuit with a Very Low Impedance Terminal

    Eitake IBARAGI  Akira HYOGO  Keitaro SEKINE  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    236-242

    A lower impedance terminal is necessary for an input terminal of current-mode circuits and an output terminal of voltage-mode circuits to reduce an error and distortion in analog signal processing. Thus, the CMOS circuit with a very low impedance terminal (VLIT circuit) is a useful analog building block to achieve the above purpose. The very low impedance terminal in the VLIT circuit is performed by a shunt-series feedback configuration. However, the feedback generates a problem of instability and/or oscillation at the same time. The problem can be removed by a phase compensation capacitor as known well, but the capacitor is not desirable for integrated circuits due to its large area. This paper proposes a new phase compensation technique for the VLIT circuit. The proposed technique does not need any capacitors to obtain a sufficient phase margin, and instead gives us the appropriate transistor sizes (Width and length of the gate). As a result, the VLIT circuit has an enough phase margin and operates stably.

  • A Unified Coding Algorithm of Lossless and Near-Lossless Color Image Compression

    Takayuki NAKACHI  Tatsuya FUJII  Junji SUZUKI  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    301-310

    This paper describes a unified coding algorithm for lossless and near-lossless color image compression that exploits the correlations between RGB signals. A reversible color transform that removes the correlations between RGB signals while avoiding any finite word length limitation is proposed for the lossless case. The resulting algorithm gives higher performance than the lossless JPEG without the color transform. Next, the lossless algorithm is extended to a unified coding algorithm of lossless and near-lossless compression schemes that can control the level of the reconstruction error on the RGB plane from 0 to p, where p is a certain small non-negative integer. The effectiveness of this algorithm was demonstrated experimentally.

  • Data Hiding via Steganographic Image Transformation

    Shuichi TAKANO  Kiyoshi TANAKA  Tatsuo SUGIMURA  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    311-319

    This paper presents a new data hiding scheme via steganographic image transformation, which is different from conventional data hiding techniques. The transformation is achieved in the frequency domain and the concept of Fourier filtering method is used. An input image is transformed into a fractal image, which can be used in Computer Graphic (CG) applications. One of the main advantages of this scheme is the amount of data to be hidden (embedded) is equal to that of the host signal (generated fractal image) while it is in general limited in the conventional data hiding schemes. Also both the opened fractal image and the hidden original one can be properly used depending on the situation. Unauthorized users will not notice the "secret" original image behind the fractal image, but even if they know that there is a hidden image it will be difficult for them to estimate the original image from the transformed image. Only authorized users who know the proper keys can regenerate the original image. The proposed method is applicable not only as a security tool for multimedia contents on web pages but also as a steganographic secret communication method through fractal images.

  • Low Voltage Analog Circuit Design Techniques: A Tutorial

    Shouli YAN  Edgar SANCHEZ-SINENCIO  

     
    INVITED PAPER

      Vol:
    E83-A No:2
      Page(s):
    179-196

    Low voltage (LV) analog circuit design techniques are addressed in this tutorial. In particular, (i) technology considerations; (ii) transistor model capable to provide performance and power tradeoffs; (iii) low voltage implementation techniques capable to reduce the power supply requirements, such as bulk-driven, floating-gate, and self-cascode MOSFETs; (iv) basic LV building blocks; (v) multi-stage frequency compensation topologies; and (vi) fully-differential and fully-balanced systems.

  • A Note on the Edge Guard Problem for Spiral Polygons

    Xuehou TAN  

     
    LETTER-Theory/Models of Computation

      Vol:
    E83-D No:2
      Page(s):
    283-284

    Two different examples have been respectively given by Aggarwal and Viswanathan to establish the necessity of (n + 2)/5 edge guards for spiral polygons. However, the former example is incorrect. To show why it is wrong, we give an alternate proof of sufficiency of (n + 2)/5 edge guards for spiral polygons. Our proof is simpler than the sufficiency proof given by Viswanathan.

  • A Phasor Model with Resting States

    Teruyuki MIYAJIMA  Fumihito BAISHO  Kazuo YAMANAKA  Kazuhiko NAKAMURA  Masahiro AGU  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:2
      Page(s):
    299-301

    A new phasor model of neural networks is proposed in which the state of each neuron possibly takes the value at the origin as well as on the unit circle. A stability property of equilibria is studied in association with the energy landscape. It is shown that a simple condition guarantees an equilibrium to be asymptotically stable.

  • Evolving Autonomous Robot: From Controller to Morphology

    Wei-Po LEE  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E83-D No:2
      Page(s):
    200-210

    Building robots is generally considered difficult, because the designer not only has to predict the interactions between the robot and the environment, but also has to deal with the consequent problems. In recent years, evolutionary algorithms have been proposed to synthesize robot controllers. However, admittedly, it is not satisfactory enough just to evolve the control system, because the performance of the control system depends on other hardware parameters -- the robot body plan -- which might include body size, wheel radius, motor time constant, etc. Therefore, the robot body plan itself should, ideally, also adapt to the task that the evolved robot is expected to accomplish. In this paper, a hybrid GP/GA framework is presented to evolve complete robot systems, including controllers and bodies, to achieve fitness-specified tasks. In order to assess the performance of the developed system, we use it with a fixed robot body plan to evolve controllers for a variety of tasks at first, then to evolve complete robot systems. Experimental results show the promise of our system.

  • Wavelet Image Coding with Context-Based Zerotree Quantization Framework

    Kai YANG  Hiroyuki KUDO  Tsuneo SAITO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:2
      Page(s):
    211-222

    We introduce a new wavelet image coding framework using context-based zerotree quantization, where an unique and efficient method for optimization of zerotree quantization is proposed. Because of the localization properties of wavelets, when a wavelet coefficient is to be quantized, the best quantizer is expected to be designed to match the statistics of the wavelet coefficients in its neighborhood, that is, the quantizer should be adaptive both in space and frequency domain. Previous image coders tended to design quantizers in a band or a class level, which limited their performances as it is difficult for the localization properties of wavelets to be exploited. Contrasting with previous coders, we propose to trace the localization properties with the combination of the tree-structured wavelet representations and adaptive models which are spatial-varying according to the local statistics. In the paper, we describe the proposed coding algorithm, where the spatial-varying models are estimated from the quantized causal neighborhoods and the zerotree pruning is based on the Lagrangian cost that can be evaluated from the statistics nearby the tree. In this way, optimization of zerotree quantization is no longer a joint optimization problem as in SFQ. Simulation results demonstrate that the coding performance is competitive, and sometimes is superior to the best results of zerotree-based coding reported in SFQ.

  • Bicomplex Waves in Electromagnetic Scattering and Diffraction Problems

    Masahiro HASHIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E83-C No:2
      Page(s):
    236-247

    The mathematical theory of bicomplex electromagnetic waves in two-dimensional scattering and diffraction problems is developed. The Vekua's integral expression for the two-dimensional fields valid only in the closed source-free region is generalized into the radiating field. The boundary-value problems for scattering and diffraction are formulated in the bicomplex space. The complex function of a single variable, which obeys the Cauchy-Riemann relations and thus expresses low-frequency aspects of the near field at a wedge of the scatterer, is connected with the radiating field by an integral operator having a suitable kernel. The behaviors of this complex function in the whole space are discussed together with those of the far-zone field or the amplitude of angular spectrum. The Hilbert's factorization scheme is used to find out a linear transformation from the far-zone field to the bicomplex-valued function of a single variable. This transformation is shown to be unique. The new integral expression for the field scattered by a thin metallic strip is also obtained.

  • Some Observations on 1-Inkdot Alternating Multi-Counter Automata with Sublinear Space

    Tsunehiro YOSHINAGA  Jianliang XU  Katsushi INOUE  

     
    LETTER-Theory of Automata, Formal Language Theory

      Vol:
    E83-D No:2
      Page(s):
    285-290

    This paper investigates some fundamental properties of 2-way alternating multi-counter automata (2amca's) with only existential (universal) states which have sublinear space and 1 inkdot. It is shown that for any function s(n) log n such that log s(n)=o(log n), s(n) space-bounded 1-inkdot 2amca's with only existential states are incomparable with the ones with only universal states, and the ones with only existential (universal) states are not closed under complementation.

  • Embedding Chordal Rings and Pyramids into Mesh-Connected Computers with Multiple Buses

    Noritaka SHIGEI  Hiromi MIYAJIMA  

     
    PAPER-Theory/Models of Computation

      Vol:
    E83-D No:2
      Page(s):
    142-150

    This paper describes embeddings of chordal rings and pyramids into mesh-connected computers with multiple buses which have a bus on each row and each column, called MCCMBs. MCCMBs have two types of communication. The one is local communication, provided by local links, and the other is global communication, provided by buses. By efficiently combining the two types of communication, optimal or efficient embeddings are achieved. For a large set of chordal rings, optimal embeddings, whose expansion, load, dilation and congestion are 1, are given. For pyramids, an efficient embedding based on a two phase strategy is presented. The embedding balances dilation and congestion.

  • Data-Parallel Volume Rendering with Adaptive Volume Subdivision

    Kentaro SANO  Hiroyuki KITAJIMA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Computer Graphics

      Vol:
    E83-D No:1
      Page(s):
    80-89

    A data-parallel processing approach is promising for real-time volume rendering because of the massive parallelism in volume rendering. In data-parallel volume rendering, local results processing elements(PEs) generate from allocated subvolumes are integrated to form a final image. Generally, the integration causes an overhead unavoidable in data-parallel volume rendering due to communications among PEs. This paper proposes a data-parallel shear-warp volume rendering algorithm combined with an adaptive volume subdivision method to reduce the communication overhead and improve processing efficiency. We implement the parallel algorithm on a message-passing multiprocessor system for performance evaluation. The experimental results show that the adaptive volume subdivision method can reduce the overhead and achieve higher efficiency compared with a conventional slab subdivision method.

  • An Efficient Interpolation Attack

    Shiho MORIAI  Takeshi SHIMOYAMA  Toshinobu KANEKO  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    39-47

    We introduce an efficient interpolation attack which gives the tighter upper bound of the complexity and the number of pairs of plaintexts and ciphertexts required for the attack. In the previously known interpolation attack there is a problem in that the required complexity for the attack can be overestimated. We solve this problem by first, finding the actual number of coefficients in the polynomial used in the attack by using a computer algebra system, and second, by finding the polynomial with fewer coefficients by choosing the plaintexts. We apply this interpolation attack to the block cipher SNAKE and succeeded in attacking many ciphers in the SNAKE family. When we evaluate the resistance of a block cipher to interpolation attack, it is necessary to apply the interpolation attack described in this paper.

  • Divergence-Based Geometric Clustering and Its Underlying Discrete Proximity Structures

    Hiroshi IMAI  Mary INABA  

     
    INVITED PAPER

      Vol:
    E83-D No:1
      Page(s):
    27-35

    This paper surveys recent progress in the investigation of the underlying discrete proximity structures of geometric clustering with respect to the divergence in information geometry. Geometric clustering with respect to the divergence provides powerful unsupervised learning algorithms, and can be applied to classifying and obtaining generalizations of complex objects represented in the feature space. The proximity relation, defined by the Voronoi diagram by the divergence, plays an important role in the design and analysis of such algorithms.

  • A Multi-Unitary Decomposition of Discrete-Time Signals in Signal Analysis

    Pavol ZAVARSKY  Takeshi MYOKEN  Noriyoshi KAMBAYASHI  Shinji FUKUMA  Masahiro IWAHASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E83-A No:1
      Page(s):
    109-120

    The paper shows some of benefits of multi-unitary decomposition in signal analysis applications. It is emphasized that decompositions of complex discrete-time signals onto a single basis provide an incomplete and in such way potentially misleading image of the signals in signal analysis applications. It is shown that the multi-unitary decimated filter banks which decompose the analyzed signal onto several bases of the given vector space can serve as a tool which provides a more complete information about the signal and at the same time the filter banks can enjoy efficient polyphase component implementation of maximally decimated, i. e. nonredundant, filter banks. An insight into the multi-unitary signal decomposition is provided. It is shown that the multiple-bases representation leads to an efficient computation of frequency domain representations of signals on a dense not necessarily uniform frequency grid. It is also shown that the multiple-bases representation can be useful in the detection of tones in digital implementations of multifrequency signaling, and in receivers of chirp systems. A proof is provided that there are possible benefits of the multiple-bases representations in de-noising applications.

  • Diffraction Pattern Functions of a Wedge Composed of Metal and Lossless Dielectric Illuminated by an E-Polarized Plane Wave

    Huen-Tae HA  Jung-Woong RA  Se-Yun KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E83-B No:1
      Page(s):
    103-106

    Diffraction pattern functions of an E-polarized scattering by a wedge composed of perfectly conducting metal and lossless dielectric with arbitrary permittivity are analyzed by applying an improved physical optics approximation and its correction. The correction terms are expressed into a complete expansion of the Neumann's series, of which coefficients are calculated numerically to satisfy the null-field condition in the complementary region.

  • Modeling of High-Tc Superconducting Transmission Lines with Anisotropic Complex Conductivity

    Keiji YOSHIDA  Haruyuki TAKEYOSHI  Hiroshi MORITA  

     
    PAPER-Microwave Devices

      Vol:
    E83-C No:1
      Page(s):
    7-14

    An analytical solution of the London equation for the weakly coupled grain model of high Tc superconducting thin films has been obtained in the case of finite thickness by taking full account of anisotropic conductivities. Using the solution, we provide general expressions for the transmission-line parameters of high Tc superconducting transmission lines. Dependences of the inductance and resistance on the grain size, coupling strength and film thickness have been numerically evaluated and discussed.

3121-3140hit(3945hit)