The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

3201-3220hit(3945hit)

  • GUITESTER: A Log-Based Usability Testing Tool for Graphical User Interfaces

    Hidehiko OKADA  Toshiyuki ASAHI  

     
    PAPER-Sofware System

      Vol:
    E82-D No:6
      Page(s):
    1030-1041

    In this paper, we propose methods for testing the usability of graphical user interface (GUI) applications based on log files of user interactions. Log analysis by existing methods is not efficient because evaluators analyze a single log file or log files of the same user and then manually compare results. The methods proposed here solve this problem; the methods enable evaluators to analyze the log files of multiple users together by detecting interaction patterns that commonly appear in the log files. To achieve the methods, we first clarify usability attributes that can be evaluated by a log-based usability testing method and user interaction patterns that have to be detected for the evaluation. Based on an investigation on the information that can be obtained from the log files, we extract the attributes of clarity, safety, simplicity, and continuity. For the evaluations of clarity and safety, the interaction patterns that have to be detected include those from user errors. We then propose our methods for detecting interaction patterns from the log files of multiple users. Patterns that commonly appear in the log files are detected by utilizing a repeating pattern detection algorithm. By regarding an operation sequence recorded in a log file as a string and concatenating strings, common patterns are able to be detected as repeating patterns in the concatenated string. We next describe the implementation of the methods in a computer tool for log-based usability testing. The tool, GUITESTER, records user-application interactions into log files, generates usability analysis data from the log files by applying the proposed methods, and visualizes the generated usability analysis data. To show the effectiveness of GUITESTER in finding usability problems, we report an example of a usability test. In this test, evaluators could find 14 problems in a tested GUI application. We finally discuss the ability of the proposed methods in terms of its log analysis efficiency, by comparing the analysis/sequence time (AT/ST) ratio of GUITESTER with those of other methods and tools. The ratio of GUITESTER is found to be smaller. This indicates the methods make log analysis more efficient.

  • Flexible Zerotree Coding of Wavelet Coefficients

    Sanghyun JOO  Hisakazu KIKUCHI  Shigenobu SASAKI  Jaeho SHIN  

     
    PAPER-Image Theory

      Vol:
    E82-A No:6
      Page(s):
    1117-1125

    We introduce an extended EZW coder that uses flexible zerotree coding of wavelet coefficients. A flexible parent-child relationship is defined so as to exploit spatial dependencies within a subband as well as hierarchical dependencies among multi-scale subbands. The new relationship is based on a particular statistics that a large coefficient is more likely to have large coefficients in its neighborhood in terms of space and scale. In the flexible relationship, a parent coefficient in a subband relates to four child coefficients in the next finer subband in the same orientation. If each of the children is larger than a given threshold, the parent extends its parentship to the neighbors close to its conventional children. A probing bit is introduced to indicate whether a significant parent has significant children to be scanned. This enables us to avoid excessive scan of insignificant coefficients. Also, produced symbols are re-symbolized into simple variable-length binary codes to remove some redundancy according to a pre-defined rule. As a result, the wavelet coefficients can be described with a small number of binary symbols. This binary symbol stream gives a competitive performance without an additional entropy coding and thus a fast encoding/decoding is possible. Moreover, the binary symbols can be more compressed by an adaptive arithmetic coding. Our experimental results are given in both binary-coded mode and arithmetic-coded mode. Also, these results are compared with those of the EZW coder.

  • Evolutionary Design of Arithmetic Circuits

    Takafumi AOKI  Naofumi HOMMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    798-806

    This paper presents a new approach to designing arithmetic circuits by using a graph-based evolutionary optimization technique called Evolutionary Graph Generation (EGG). The key idea of the proposed method is to introduce a higher level of abstraction for arithmetic algorithms, in which arithmetic circuit structures are modeled as data-flow graphs associated with specific number representation systems. The EGG system employs evolutionary operations to transform the structure of graphs directly, which makes it possible to generate the desired circuit structure efficiently. The potential capability of EGG is demonstrated through an experiment of generating constant-coefficient multipliers.

  • On Complexity of Computing the Permanent of a Rectangular Matrix

    Tsutomu KAWABATA  Jun TARUI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    741-744

    We show that the permanent of an m n rectangular matrix can be computed with O(n 2m 3m) multiplications and additions. Asymptotically, this is better than straightforward extensions of the best known algorithms for the permanent of a square matrix when m/n log3 2 and n .

  • Computational Investigations of All-Terminal Network Reliability via BDDs

    Hiroshi IMAI  Kyoko SEKINE  Keiko IMAI  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    714-721

    This paper reports computational results of a new approach of analyzing network reliability against probabilistic link failures. This problem is hard to solve exactly when it is large-scale, which is shown from complexity theory, but the approach enables us to analyze networks of moderate size, as demonstrated by our experimental results. Furthermore, this approach yields a polynomial-time algorithm for complete graphs, whose reliability provides a natural upper bound for simple networks, and also leads to an efficient algorithm for computing the dominant part of the reliability function when the failure probability is sufficiently small. Computational results for these cases are also reported. This approach thus establishes a fundamental technology of analyzing network reliability in practice.

  • A Distortion Analysis Method for FET Amplifiers Using Novel Frequency-Dependent Complex Power Series Model

    Kenichi HORIGUCHI  Kazuhisa YAMAUCHI  Kazutomi MORI  Masatoshi NAKAYAMA  Yukio IKEDA  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    737-743

    This paper proposes a new distortion analysis method for frequency-dependent FET amplifiers, which uses a novel Frequency-Dependent Complex Power Series (FDCPS) model. This model consists of a frequency-independent nonlinear amplifier represented by an odd-order complex power series and frequency-dependent input and output filters. The in-band frequency characteristics of the saturation region are represented by the frequency-dependent output filter, while the in-band frequency characteristics of the linear region are represented by the frequency-dependent input and output filters. In this method, the time-domain analysis is carried out to calculate the frequency-independent nonlinear amplifier characteristics, and the frequency-domain analysis is applied to calculate the frequency-dependent input and output filter characteristics. The third-order intermodulation (IM3) calculated by this method for a GaAs MESFET amplifier is in good agreement with the numerical results obtained by the Harmonic Balance (HB) method. Moreover, the IM3 calculated by this method also agrees well with the measured data for an L-band 3-stage GaAs MESFET amplifier. It is shown that this method is effective for calculating frequency-dependent distortion of a nonlinear amplifier with broadband modulation signals.

  • An Analysis for Fast Construction of States in the Bottom-Up Tree Pattern Matching Scheme

    Kyung-Woo KANG  Kwang-Moo CHOE  Min-Soo JUNG  

     
    PAPER-Sofware System

      Vol:
    E82-D No:5
      Page(s):
    973-976

    In this paper, we propose an efficient method of constructing states in bottom-up tree pattern matching with dynamic programming technique for optimal code generation. This method can be derived from precomputing the analysis which is needed for constructing states. The proposed scheme is more efficient than other scheme because we can avoid unfruitful tests in constructing states at compile time. Furthermore, the relevant analyses needed for this proposal are largely achieved at compile-compile time, which secures actual efficiency at compile time.

  • Incompletely Specified Regular Ternary Logic Functions and Their Minimization

    Tomoyuki ARAKI  Masao MUKAIDONO  

     
    PAPER-Logic and Logic Functions

      Vol:
    E82-D No:5
      Page(s):
    910-918

    Regular ternary logic functions are one of the most useful special classes of Kleenean functions, and a lot of research has been done on them. However, there has been little work done on incompletely specified regular ternary logic functions. This paper describes the following points: (1) Minimization of incompletely specified regular ternary logic functions. (2) A new definition of incompletely specified fuzzy switching functions and their minimization. (Concretely speaking, minimal disjunctive forms of incompletely specified fuzzy switching functions are represented in formulas of regular ternary logic functions. ) (3) Their application to fuzzy logic circuits such as fuzzy PLAs of AND-OR type.

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • A Competitive Learning Algorithm Using Symmetry

    Mu-Chun SU  Chien-Hsing CHOU  

     
    PAPER-Neural Networks

      Vol:
    E82-A No:4
      Page(s):
    680-687

    In this paper, we propose a new competitive learning algorithm for training single-layer neural networks to cluster data. The proposed algorithm adopts a new measure based on the idea of "symmetry" so that neurons compete with each other based on the symmetrical distance instead of the Euclidean distance. The detected clusters may be a set of clusters of different geometrical structures. Four data sets are tested to illustrate the effectiveness of our proposed algorithm.

  • Multi-Round Anonymous Auction Protocols

    Hiroaki KIKUCHI  Michael HAKAVY  Doug TYGAR  

     
    PAPER

      Vol:
    E82-D No:4
      Page(s):
    769-777

    Auctions are a critical element of the electronic commerce infrastructure. But for real-time applications, auctions are a potential problem - they can cause significant time delays. Thus, for most real-time applications, sealed-bid auctions are recommended. But how do we handle tie-breaking in sealed-bid auctions? This paper analyzes the use of multi-round auctions where the winners from an auction round participate in a subsequent tie-breaking second auction round. We perform this analysis over the classical first-price sealed-bid auction that has been modified to provide full anonymity. We analyze the expected number of rounds and optimal values to minimize communication costs.

  • Modeling, Algorithms and Analysis of Survivable VP Planning in ATM Networks

    Cheng-Shong WU  Shi-Wei LEE  

     
    PAPER-Communication Networks and Services

      Vol:
    E82-B No:4
      Page(s):
    591-599

    In this paper, we consider the working VP and backup VP routing problems jointly and employ the integer programming based approach to maximize the system resource utilization and the network survivability. The VP planning problem is formulated as a nonlinear combinatorial optimization problem. The objective function minimizes the resource usage while maximizing the network survivability. By proper transformation of the objective function and applying cutting plane method, the original formulation is transformed into an integer linear programing formulation which is suitable for applying Lagrangian relaxation techniques. After Lagrangian relaxation, the problem is further decomposed into several tractable subproblems. Unlike others' work, the candidate path set does not need to be prepared in advance and the best paths are generated while solving subproblems in our approach. Heuristic algorithms based on the solving procedure of the Lagrangian relaxation are developed. Closely examining the gap between the heuristic upper bounds and the Lagrangian lower bounds reveals that the proposed algorithm can efficiently provide a nearly optimal solution for the survivable VP layout design in ATM networks.

  • Optimization Approaches in Computer Vision and Image Processing

    Katsuhiko SAKAUE  Akira AMANO  Naokazu YOKOYA  

     
    INVITED SURVEY PAPER

      Vol:
    E82-D No:3
      Page(s):
    534-547

    In this paper, the authors present general views of computer vision and image processing based on optimization. Relaxation and regularization in both broad and narrow senses are used in various fields and problems of computer vision and image processing, and they are currently being combined with general-purpose optimization algorithms. The principle and case examples of relaxation and regularization are discussed; the application of optimization to shape description that is a particularly important problem in the field is described; and the use of a genetic algorithm (GA) as a method of optimization is introduced.

  • Omnidirectional Sensing and Its Applications

    Yasushi YAGI  

     
    INVITED SURVEY PAPER

      Vol:
    E82-D No:3
      Page(s):
    568-579

    The goal of this paper is to present a critical survey of existing literature on an omnidirectional sensing. The area of vision application such as autonomous robot navigation, telepresence and virtual reality is expanding by use of a camera with a wide angle of view. In particular, a real-time omnidirectional camera with a single center of projection is suitable for analyzing and monitoring, because we can easily generate any desired image projected on any designated image plane, such as a pure perspective image or a panoramic image, from the omnidirectional input image. In this paper, I review designs and principles of existing omnidirectional cameras, which can acquire an omnidirectional (360 degrees) field of view, and their applications in fields of autonomous robot navigation, telepresence, remote surveillance and virtual reality.

  • Iterative Methods for Dense Linear Systems on Distributed Memory Parallel Computers

    Muneharu YOKOYAMA  Takaomi SHIGEHARA  Hiroshi MIZOGUCHI  Taketoshi MISHIMA  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    483-486

    The Conjugate Residual method, one of the iterative methods for solving linear systems, is applied to the problems with a dense coefficient matrix on distributed memory parallel computers. Based on an assumption on the computation and communication times of the proposed algorithm for parallel computers, it is shown that the optimal number of processing elements is proportional to the problem size N. The validity of the prediction is confirmed through numerical experiments on Hitachi SR2201.

  • Computational Sensors -- Vision VLSI

    Kiyoharu AIZAWA  

     
    INVITED SURVEY PAPER

      Vol:
    E82-D No:3
      Page(s):
    580-588

    Computational sensor (smart sensor, vision chip in other words) is a very small integrated system, in which processing and sensing are unified on a single VLSI chip. It is designed for a specific targeted application. Research activities of computational sensor are described in this paper. There have been quite a few proposals and implementations in computational sensors. Firstly, their approaches are summarized from several points of view, such as advantage vs. disadvantage, neural vs. functional, architecture, analog vs. digital, local vs. global processing, imaging vs. processing, new processing paradigms. Then, several examples are introduced which are spatial processings, temporal processings, A/D conversions, programmable computational sensors. Finally, the paper is concluded.

  • Fast Precise Interrupt Handling without Associative Searching in Multiple Out-Of-Order Issue Processors

    Sang-Joon NAM  In-Cheol PARK  Chong-Min KYUNG  

     
    PAPER-Computer Hardware and Design

      Vol:
    E82-D No:3
      Page(s):
    645-653

    This paper presents a new approach to the precise interrupt handling problem in modern processors with multiple out-of-order issues. It is difficult to implement a precise interrupt scheme in the processors because later instructions may change the process states before their preceding instructions have completed. We propose a fast precise interrupt handling scheme which can recover the precise state in one cycle if an interrupt occurs. In addition, the scheme removes all the associative searching operations which are inevitable in the previous approaches. To deal with the renaming of destination registers, we present a new bank-based register file which is indexed by bank index tables containing the bank identifiers of renamed register entries. Simulation results based on the superscalar MIPS architecture show that the register file with 3 banks is a good trade-off between high performance and low complexity.

  • New Technologies Doing Much for Solving the EMC Problem in the High Performance Digital PCBs and Equipment

    Hirokazu TOHYA  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    450-456

    This paper is consisting of the two novel EMC technologies that we have been developed in our laboratory. The first is the technology for measuring the RF (Radio Frequency) nearby magnetic field and estimation of the RF current in the printed circuit board (PCB) by using the small loop antenna with multi-layer PCB structure developed by our laboratory. I introduce the application of our small loop antenna with its physical structure and the analysis of the nearby magnetic field distribution of the printed circuit board applying the discrete Wavelet analysis. We can understand the behavior of the digital circuit in detail, and we can also take measures to meet the specification about the electromagnetic radiation from the digital circuit from the higher order of priority by using these technologies. The second is our proposing novel technology for reducing the electromagnetic radiation from the digital equipment by taking notice of the improvement of the de-coupling in the PCB. We confirmed the remarkable effect of this technology by redesigning the motherboard of the small-sized computer.

  • 5 Gsps Oversampling Analog-to-Digital Converters with Polarity Alternating Feedback Comparator

    Takumi MIYASHITA  Alfredo OLMOS  Mizuhisa NIHEI  Yuu WATANABE  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E82-C No:3
      Page(s):
    483-490

    We fabricated and evaluated a second-order ΣΔ ADC with a polarity alternating feedback (PAF) comparator based on 0.4 µm InGaP/InGaAs enhancement and depletion mode high electron mobility transistors (E/D HEMT) technology. We propose a PAF technique for enhancing the sampling frequency and have applied the technique in the design of ADC circuit. The ADC has a signal-to-noise ratio (SNR) of 43 dB when operating at a differential clock frequency of 4.9 GHz, and has a power dissipation of 400 mW.

  • Passive Range Sensing Techniques: Depth from Images

    Naokazu YOKOYA  Takeshi SHAKUNAGA  Masayuki KANBARA  

     
    INVITED SURVEY PAPER

      Vol:
    E82-D No:3
      Page(s):
    523-533

    Acquisition of three-dimensional information of a real-world scene from two-dimensional images has been one of the most important issues in computer vision and image understanding in the last two decades. Noncontact range acquisition techniques can be essentially classified into two classes: Passive and active. This paper concentrates on passive depth extraction techniques which have the advantage that 3-D information can be obtained without affecting the scene. Passive range sensing techniques are often referred to as shape-from-x, where x is one of visual cues such as shading, texture, contour, focus, stereo, and motion. These techniques produce 2.5-D representations of visible surfaces. This survey discusses aspects of this research field and reviews some recent advances including video-rate range imaging sensors as well as emerging themes and applications.

3201-3220hit(3945hit)