The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

3081-3100hit(6809hit)

  • A QoS Management Technique of Urgent Information Provision in ITS Services Using DSRC for Autonomous Base Stations

    Akitoshi SHIMURA  Takeiki AIZONO  Masashi HIRAIWA  Shigeki SUGANO  

     
    PAPER

      Vol:
    E91-D No:9
      Page(s):
    2276-2284

    A QoS management technique based on an autonomous decentralized mobility system, which is an autonomous decentralized system enhanced to provide mobile stations with information about urgent roadway situations, is proposed in this paper. This technique enables urgent messages to be flexibly and quickly transmitted to mobile stations by multiple decentralized base stations using dedicated short range communication. It also supports the easy addition of additional base stations. Each station autonomously creates information-delivery communities based on the urgency of the messages it receives through the roadside network and the distances between the senders and receivers. Each station dynamically determines the urgency of messages according to the message content and the speed of the mobile stations. Evaluation of this technique applied to the Smart Gateway system, which provides driving-assistance services to mobile stations through dedicated short-range communication, demonstrated its effectiveness and that it is suitable for actual systems.

  • Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn

    Peng CHENG  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2314-2321

    Let Ni be the number of connected spanning subgraphs with i(n-1 i m) edges in an n-vertex m-edge undirected graph G=(V,E). Although Nn-1 is computed in polynomial time by the Matrix-tree theorem, whether Nn is efficiently computed for a graph G is an open problem (see e.g., [2]). On the other hand, whether Nn2≥ Nn-1Nn+1 for a graph G is also open as a part of log concave conjecture (see e.g., [6],[12]). In this paper, for a complete graph Kn, we give the formulas for Nn, Nn+1, by which Nn, Nn+1 are respectively computed in polynomial time on n, and, in particular, prove Nn2> Nn-1Nn+1 as well.

  • A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    Sangback MA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E91-A No:9
      Page(s):
    2578-2587

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wavefronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i.e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering and ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  • Robustness Analysis of M-ary Quantization Based Watermarking

    Jun-Horng CHEN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2248-2251

    This work addresses the issue on the robustness performance in M-ary quantization watermarking. If the encoded messages are arranged in the order of Gray Code such that adjacent messages differ at only one bit, this work demonstrates the robustness will be substantially improved in low DNR scenarios. Furthermore, the two-bit quantization watermarking can outperform the LUT approach which also provides the robustness improvement in the high-noisy environments.

  • Histogram Equalization Utilizing Window-Based Smoothed CDF Estimation for Feature Compensation

    Youngjoo SUH  Hoirin KIM  Munchurl KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:8
      Page(s):
    2199-2202

    In this letter, we propose a new histogram equalization method to compensate for acoustic mismatches mainly caused by corruption of additive noise and channel distortion in speech recognition. The proposed method employs an improved test cumulative distribution function (CDF) by more accurately smoothing the conventional order statistics-based test CDF with the use of window functions for robust feature compensation. Experiments on the AURORA 2 framework confirmed that the proposed method is effective in compensating speech recognition features by reducing the averaged relative error by 13.12% over the order statistics-based conventional histogram equalization method and by 58.02% over the mel-cepstral-based features for the three test sets.

  • Global Signal Elimination and Local Signals Enhancement from EM Radiation Waves Using Independent Component Analysis

    Motoaki MOURI  Arao FUNASE  Andrzej CICHOCKI  Ichi TAKUMI  Hiroshi YASUKAWA  Masayasu HATA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1875-1882

    Anomalous environmental electromagnetic (EM) radiation waves have been reported as the portents of earthquakes. Our study's goal is predicting earthquakes using EM radiation waves by detecting some anomalies. We have been measuring the Extremely Low Frequency (ELF) range EM radiation waves all over Japan. However, the recorded data contain signals unrelated to earthquakes. These signals, as noise, confound earthquake prediction efforts. In this paper, we propose an efficient method of global signal elimination and enhancement local signals using Independent Component Analysis (ICA). We evaluated the effectiveness of this method.

  • Novel Conventional Standard Linear Element Based Complete Passive Equivalent Circuit Models of the Practical OTA-Based Inductors

    Rawid BANCHUIN  Boonruk CHIPIPOP  Boonchareon SIRINAOVAKUL  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1883-1889

    In this research, the practical OTA-based inductors of all structures have been studied and their complete passive equivalent circuit models, where the effects of both parasitic elements and finite opened-loop bandwidth have been taken into account, also contain only the conventional standard linear elements i.e. the ordinary resistor, inductor and capacitor, without any infeasible high order element e.g. super inductor etc., have been proposed. The resulting models have been found to be excellently accurate, excellently straight forward, far superior to the previously proposed ones and completely realizable by the passive elements. Hence, the proposed passive equivalent circuit models have been found to be the convenience and versatile tools for the implementation of any analog and mixed signal processing circuits and systems.

  • The O-Sequence:Representation of 3D-Dissection

    Hidenori OHTA  Toshinori YAMADA  Chikaaki KODAMA  Kunihiro FUJIYOSHI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E91-A No:8
      Page(s):
    2111-2119

    A 3D-dissection (A rectangular solid dissection) is a dissection of a rectangular solid into smaller rectangular solids by planes. In this paper, we propose an O-sequence, a string of representing any 3D-dissection which is dissected by only non-crossing rectangular planes. We also present a necessary and sufficient condition for a given string to be an O-sequence.

  • Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks

    Navrati SAXENA  Abhishek ROY  Jitae SHIN  

     
    LETTER-Network

      Vol:
    E91-B No:8
      Page(s):
    2716-2719

    A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a near-optimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.

  • Video Watermarking by Space-Time Interest Points

    Lei-Da LI  Bao-Long GUO  Jeng-Shyang PAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2252-2256

    This letter presents a novel robust video watermarking scheme based on space-time interest points. These points correspond to inherent structures of the video so that they can be used as synchronization signals for watermark embedding and extraction. In the proposed scheme, local regions are generated using the space-time interest points, and the watermark is embedded into all the regions by quantization. It is a blind scheme and the watermark can be extracted from any position of the video. Experimental results show that the watermark is invisible and it can robustly survive traditional signal processing attacks and video-oriented attacks.

  • Threshold Equalization for On-Line Signature Verification

    Isao NAKANISHI  Hiroyuki SAKAMOTO  Yoshio ITOH  Yutaka FUKUI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2244-2247

    In on-line signature verification, complexity of signature shape can influence the value of the optimal threshold for individual signatures. Writer-dependent threshold selection has been proposed but it requires forgery data. It is not easy to collect such forgery data in practical applications. Therefore, some threshold equalization method using only genuine data is needed. In this letter, we propose three different threshold equalization methods based on the complexity of signature. Their effectiveness is confirmed in experiments using a multi-matcher DWT on-line signature verification system.

  • Differential Energy Based Watermarking Algorithm Using Wavelet Tree Group Modulation (WTGM) and Human Visual System

    Min-Jen TSAI  Chang-Hsing SHEN  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1961-1973

    Wavelet tree based watermarking algorithms are using the wavelet coefficient energy difference for copyright protection and ownership verification. WTQ (Wavelet Tree Quantization) algorithm is the representative technique using energy difference for watermarking. According to the cryptanalysis on WTQ, the watermark embedded in the protected image can be removed successfully. In this paper, we present a novel differential energy watermarking algorithm based on the wavelet tree group modulation structure, i.e. WTGM (Wavelet Tree Group Modulation). The wavelet coefficients of host image are divided into disjoint super trees (each super tree containing two sub-super trees). The watermark is embedded in the relatively high-frequency components using the group strategy such that energies of sub-super trees are close. The employment of wavelet tree structure, sum-of-subsets and positive/negative modulation effectively improve the drawbacks of the WTQ scheme for its insecurity. The integration of the HVS (Human Visual System) for WTGM provides a better visual effect of the watermarked image. The experimental results demonstrate the effectiveness of our algorithm in terms of robustness and imperceptibility.

  • Shielding Effectiveness of a Collinear Unequal Paired-Narrow-Slot Array in Conducting Screens

    Ki-Chai KIM  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E91-B No:8
      Page(s):
    2768-2771

    This letter presents a method that offers the simple calculation of the electric shielding effectiveness of a collinear unequal narrow slot array in a planar conducting screen. An integral equation for an aperture electric field on the unequal narrow slot array is used instead of coupled integral equations for a multiple slot and solved by applying Galerkin's method of moments. Numerical results illustrate the shielding effectiveness and aperture electric field distributions of the collinear unequal two-narrow slot array by using single integral equation.

  • A New Frequency Partitioning and Allocation of Subcarriers for Fractional Frequency Reuse in Mobile Communication Systems

    Seung Su HAN  Jongho PARK  Tae-Jin LEE  Hyun Gi AHN  Kyunghun JANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2748-2751

    Some OFDMA-based wireless commuication systems, e.g., Wireless Broadband Internet (WiBro) or Worldwide interoperability for Microwave Access (WiMAX), support frequency reuse of 1 to maximize spectral efficiency. One of the efficient methods to reduce co-channel interference (CCI) caused by frequency reuse is fractional frequency reuse (FFR). In this paper, we propose and validate a novel frequency partitioning method and subcarrier assignment mechanism to improve system and individual capacity of mobile systems using FFR.

  • Several Families of Sequences with Low Correlation and Large Linear Span

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E91-A No:8
      Page(s):
    2263-2268

    In DS-CDMA systems and DS-UWB radios, low correlation of spreading sequences can greatly help to minimize multiple access interference (MAI) and large linear span of spreading sequences can reduce their predictability. In this letter, new sequence sets with low correlation and large linear span are proposed. Based on the construction Tr1m[Trmn(αbt+γiαdt)]r for generating p-ary sequences of period pn-1, where n=2m, d=upm v, b=u v, γi GF(pn), and p is an arbitrary prime number, several methods to choose the parameter d are provided. The obtained sequences with family size pn are of four-valued, five-valued, six-valued or seven-valued correlation and the maximum nontrivial correlation value is (u+v-1)pm-1. The simulation by a computer shows that the linear span of the new sequences is larger than that of the sequences with Niho-type and Welch-type decimations, and similar to that of [10].

  • Dynamic Bandwidth Allocation for QoS in IEEE 802.16 Broadband Wireless Networks

    Jae-Han JEON  Jong-Tae LIM  

     
    LETTER-Network

      Vol:
    E91-B No:8
      Page(s):
    2707-2710

    IEEE 802.16 broadband wireless access (BWA) technology is suitable for providing multimedia applications without accessing the wired networks directly. Although IEEE 802.16 standard well defines the quality of service (QoS) framework, it makes no specific recommendation with regard to the bandwidth allocation. In this paper, we propose an algorithm for allocating bandwidth in response to dynamic changes in the arrival rate such that the total bandwidth is efficiently utilized.

  • Throughput Improvement with Discrete Pilot Signal Assignment and Iterative Channel Identification for MQRD-PCM/OFDM

    Chang-Jun AHN  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    2000-2007

    In MIMO systems, the channel identification is important to distinguish transmitted signals from multiple transmit antennas. One of the most typical channel identification schemes is to employ a code division multiplexing (CDM) based scheme in which a unique spreading code is assigned to distinguish both BS and MS antenna elements. However, by increasing the number of base stations and transmit antenna elements, large spreading codes and pilot symbols are required to distinguish the received power from all the connectable BS, as well as to identify all the CSI for the combination of transmitter and receiver antenna elements. Furthermore, the complexity of maximum likelihood detection (MLD) for implementation of MIMO is a considerable work. To reduce these problems, in this paper, we propose the parallel detection algorithm using multiple QR decompositions with permuted channel matrix (MQRD-PCM) with discrete pilot signal assignment and iterative channel identification for MIMO/OFDM.

  • Fast and Efficient MRF-Based Detection Algorithm of Missing Data in Degraded Image Sequences

    Sang-Churl NAM  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1898-1906

    This paper proposes a fast, efficient detection algorithm of missing data (also referred to as blotches) based on Markov Random Field (MRF) models with less computational load and a lower false alarm rate than the existing MRF-based blotch detection algorithms. The proposed algorithm can reduce the computational load by applying fast block-matching motion estimation based on the diamond searching pattern and restricting the attention of the blotch detection process to only the candidate bloch areas. The problem of confusion of the blotches is frequently seen in the vicinity of a moving object due to poorly estimated motion vectors. To solve this problem, we incorporate a weighting function with respect to the pixels, which are accurately detected by our moving edge detector and inputed into the formulation. To solve the blotch detection problem formulated as a maximum a posteriori (MAP) problem, an iterated conditional modes (ICM) algorithm is used. The experimental results show that our proposed method results in fewer blotch detection errors than the conventional blotch detectors, and enables lower computational cost and the more efficient detecting performance when compared with existing MRF-based detectors.

  • A Novel Design of Reconfigurable Wavelength-Time Optical Codes to Enhance Security in Optical CDMA Networks

    NASARUDDIN  Tetsuo TSUJIOKA  

     
    PAPER

      Vol:
    E91-B No:8
      Page(s):
    2516-2524

    An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.

  • Multi-Constrained QoS Geographic Routing for Heterogeneous Traffic in Sensor Networks

    Md. Abdur RAZZAQUE  Muhammad Mahbub ALAM  Md. MAMUN-OR-RASHID  Choong Seon HONG  

     
    PAPER-Network

      Vol:
    E91-B No:8
      Page(s):
    2589-2601

    Sensor networks that carry heterogeneous traffics and are responsible for reporting very time-critical important events necessitate an efficient and robust data dissemination framework. Designing such a framework, that can achieve both the reliability and delay guarantee while preserving the energy efficiency, namely multi-constrained QoS (MCQoS), is a challenging problem. Although there have been many research works on QoS routing for sensor networks, to the best of our knowledge, no one addresses the above three service parameters all together. In this paper, we propose a new aggregate routing model and a distributed aggregate routing algorithm (DARA) that implements the model for achieving MCQoS. DARA is designed for multi-sink, multipath and location aware network architecture. We develop probabilistic models for multipath reliability constraint, sojourn time of a packet at an intermediary node and node energy consumption. Delay-differentiated multi-speed packet forwarding and in-node packet scheduling mechanisms are also incorporated with DARA. The results of the simulations demonstrate that DARA effectively improves the reliability, delay guarantee and energy efficiency.

3081-3100hit(6809hit)