The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

801-820hit(6809hit)

  • Performance Comparison of Subjective Quality Assessment Methods for 4k Video

    Kimiko KAWASHIMA  Kazuhisa YAMAGISHI  Takanori HAYASHI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    933-945

    Many subjective quality assessment methods have been standardized. Experimenters can select a method from these methods in accordance with the aim of the planned subjective assessment experiment. It is often argued that the results of subjective quality assessment are affected by range effects that are caused by the quality distribution of the assessment videos. However, there are no studies on the double stimulus continuous quality-scale (DSCQS) and absolute category rating with hidden reference (ACR-HR) methods that investigate range effects in the high-quality range. Therefore, we conduct experiments using high-quality assessment videos (high-quality experiment) and low-to-high-quality assessment videos (low-to-high-quality experiment) and compare the DSCQS and ACR-HR methods in terms of accuracy, stability, and discrimination ability. Regarding accuracy, we find that the mean opinion scores of the DSCQS and ACR-HR methods were marginally affected by range effects, although almost all common processed video sequences showed no significant difference for the high- and low-to-high-quality experiments. Second, the DSCQS and ACR-HR methods were equally stable in the low-to-high-quality experiment, whereas the DSCQS method was more stable than the ACR-HR method in the high-quality experiment. Finally, the DSCQS method had higher discrimination ability than the ACR-HR method in the low-to-high-quality experiment, whereas both methods had almost the same discrimination ability for the high-quality experiment. We thus determined that the DSCQS method is better at minimizing the range effects than the ACR-HR method in the high-quality range.

  • Exploring the Gateway-Based Distributed Location Management Schemes in LEO Satellite Networks

    Wei HAN  Baosheng WANG  Zhenqian FENG  Baokang ZHAO  Wanrong YU  Zhu TANG  

     
    PAPER-Network Management/Operation

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    825-834

    Comparing with that of terrestrial networks, the location management in satellite networks is mainly restricted by three factors, i.e., the limited on-board processing (OBP), insufficient link resources and long propagation delay. Under these restrictions, the limited OBP can be smoothened by terrestrial gateway-based location management, the constraint from link resources demands the bandwidth-efficient management scheme and long propagation delay potentially lowers the management efficiency. Currently, the reduction of the management cost has always been the main direction in existing work which is based on the centralized management architecture. This centralized management has many defects, such as the non-optimal routing, scalability problem and single point of failure. To address these problems, this paper explores gateway-based distributed location management schemes for Low Earth Orbit (LEO) satellite networks. Three management schemes based on terrestrial gateways are proposed and analyzed: loose location management, precise location management, and the grouping location management. The analyses specifically analyze the cost of location queries and show their significant influence on the total cost which includes the location management and query. Starting from the above analysis, we speculate and prove the existence of the optimum scheme in grouping location management, which has the lowest total cost for the query frequency within given range. Simulation results validate the theoretical analysis on the cost and show the feature of latency in location queries, which provide a valuable insight into the design of the distributed location management scheme in satellite networks.

  • Analysis of a Sufficient Condition on the Optimality of a Decoded Codeword of Soft-Decision Decodings for Binary Linear Codes on a 4-Level Quantization over an AWGN Channel

    Takuya KUSAKA  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    570-576

    In this paper, a study of a sufficient condition on the optimality of a decoded codeword of soft-decision decodings for binary linear codes is shown for a quantized case. A typical uniform 4-level quantizer for soft-decision decodings is employed for the analysis. Simulation results on the (64,42,8) Reed-Muller code indicates that the condition is effective for SN ratios at 3[dB] or higher for any iterative style optimum decodings.

  • A Flow Aggregation Method under Allowable Delay Limitation in SDN

    Takuya KOSUGIYAMA  Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    795-804

    Software-Defined Networking (SDN) can be applied for managing application flows dynamically by a logically centralized SDN controller and SDN switches. Because one SDN switch can support just a few thousand forwarding rule installations per second, it is a barrier to dynamic and scalable application flow management. For this reason, it is essential to reduce the number of application flows if they are to be successfully managed. Nowadays, since much attention has been paid to developing a network service that reduces application delay, the allowable delay of application flows has become an important factor. However, there has been no work on minimizing the number of flows while satisfying end-to-end delay of flows. In this paper, we propose a method that can aggregate flows and minimize the number flows in a network while ensuring all flows satisfy their allowable delay in accordance with QoS or SLA. Since the problem is classified as NP-hard, we propose a heuristic algorithm. We compared the aggregation effect of the proposed method, simple aggregation method and optimal solution by simulation. In addition, we clarify the characteristics of the proposed method by performing simulations with various parameter settings. The results show that the proposed method decreases the number of rules than comparative aggregation method and has very shorter computational time than optimal solution.

  • Optimal ZCZ Complementary Sequence Sets with Low Column Sequence PMEPR

    Yubo LI  Liying TIAN  Shengyi LIU  

     
    LETTER-Information Theory

      Vol:
    E101-A No:3
      Page(s):
    612-616

    In this letter, based on orthogonal Golay sequence sets and orthogonal matrices, general constructions of zero correlation zone (ZCZ) aperiodic complementary sequence (ZACS) sets are proposed. The resultant ZACSs have column sequence peak-to-mean envelop power ratio (PMEPR) of at most 2, and the parameters of the sequence sets are optimal with respect to the theoretical bound. The novel ZACS sets are suitable for approximately synchronized multi-carrier CDMA (MC-CDMA) communication systems.

  • vEPC Optimal Resource Assignment Method for Accommodating M2M Communications

    Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    637-647

    The 5G mobile network environment has been studied and developed, and the concept of a vEPC (Virtualized Evolved Packet Core) has been introduced as a framework for Network Functions Virtualization (NFV). Machine-to-Machine (M2M) communications in 5G networks require much faster response than are possible in 4G networks. However, if both the control plane (C-plane) and the data plane (D-plane) functions of the EPC are migrated into a single vEPC server, M2M devices and other user equipments (UEs) share the same resources. To accommodate delay-sensitive M2M sessions in vEPC networks, not only signaling performance on the C-plane but also packet processing performance on the D-plane must be optimized. In this paper, we propose a method for optimizing resource assignment of C-plane and D-plane Virtualized Network Functions (VNFs) in a vEPC server, called the vEPC-ORA method. We distinguish the communications of M2M devices and smartphones and model the vEPC server by using queueing theory. Numerical analysis of optimal resource assignment shows that our proposed method minimizes the blocking rates of M2M sessions and smartphone sessions. We also confirmed that the mean packet processing time is kept within the allowable delay for each communication type, as long as the vEPC server has enough VM resources. Moreover, we study a resource granularity effect on the optimal resource assignment. Numerical analysis under a fixed number of hardware resources of MME and S/P-GW is done for various resource granularities of the vEPC server. The evaluation results of numerical analyses showed that the vEPC-ORA method derives the optimal resource assignment in practical calculation times.

  • The Declarative and Reusable Path Composition for Semantic Web-Driven SDN

    Xi CHEN  Tao WU  Lei XIE  

     
    PAPER-Network

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    816-824

    The centralized controller of SDN enables a global topology view of the underlying network. It is possible for the SDN controller to achieve globally optimized resource composition and utilization, including optimized end-to-end paths. Currently, resource composition in SDN arena is usually conducted in an imperative manner where composition logics are explicitly specified in high level programming languages. It requires strong programming and OpenFlow backgrounds. This paper proposes declarative path composition, namely Compass, which offers a human-friendly user interface similar to natural language. Borrowing methodologies from Semantic Web, Compass models and stores SDN resources using OWL and RDF, respectively, to foster the virtualized and unified management of the network resources regardless of the concrete controller platform. Besides, path composition is conducted in a declarative manner where the user merely specifies the composition goal in the SPARQL query language instead of explicitly specifying concrete composition details in programming languages. Composed paths are also reused based on similarity matching, to reduce the chance of time-consuming path composition. The experiment results reflect the applicability of Compass in path composition and reuse.

  • Phase Locking and Frequency Tuning of Resonant-Tunneling-Diode Terahertz Oscillators

    Kota OGINO  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:3
      Page(s):
    183-185

    Phase locking with frequency tuning is demonstrated for a resonant-tunneling-diode terahertz oscillator integrated with a biased varactor diode. The tuning range of oscillation frequency is 606-613GHz. The phase noise in the output of the oscillator is transformed to amplitude noise, and fed back to the varactor diode together with bias voltage. The spectral linewidth at least <2Hz was obtained at the oscillation frequencies tuned by the bias voltage of the varactor diode.

  • Approximate Frequent Pattern Discovery in Compressed Space

    Shouhei FUKUNAGA  Yoshimasa TAKABATAKE  Tomohiro I  Hiroshi SAKAMOTO  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    593-601

    A grammar compression is a restricted context-free grammar (CFG) that derives a single string deterministically. The goal of a grammar compression algorithm is to develop a smaller CFG by finding and removing duplicate patterns, which is simply a frequent pattern discovery process. Any frequent pattern can be obtained in linear time; however, a huge working space is required for longer patterns, and the entire string must be preloaded into memory. We propose an online algorithm to address this problem approximately within compressed space. For an input sequence of symbols, a1,a2,..., let Gi be a grammar compression for the string a1a2…ai. In this study, an online algorithm is considered one that can compute Gi+1 from (Gi,ai+1) without explicitly decompressing Gi. Here, let G be a grammar compression for string S. We say that variable X approximates a substring P of S within approximation ratio δ iff for any interval [i,j] with P=S[i,j], the parse tree of G has a node labeled with X that derives S[l,r] for a subinterval [l,r] of [i,j] satisfying |[l,r]|≥δ|[i,j]|. Then, G solves the frequent pattern discovery problem approximately within δ iff for any frequent pattern P of S, there exists a variable that approximates P within δ. Here, δ is called the approximation ratio of G for S. Previously, the best approximation ratio obtained by a polynomial time algorithm was Ω(1/lg2|P|). The main contribution of this work is to present a new lower bound Ω(1/<*|S|lg|P|) that is smaller than the previous bound when lg*|S|

  • Generalized Spatial Modulation Based on Quaternary Quasi-Orthogonal Sequences

    Yulong SHANG  Hojun KIM  Hosung PARK  Taejin JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    640-643

    The conventional generalized spatial modulation (GSM) simultaneously activates multiple transmit antennas in order to improve the spectral efficiency of the original SM. In this letter, to lessen the hardware burden of the multiple RF chains, we provide a new scheme that is designed by combining the GSM scheme using only two active antennas with quaternary quasi-orthogonal sequences of a length of two. Compared with the other SM schemes, the proposed scheme has significant benefits in average error performances and/or their hardware complexities of the RF systems.

  • An Efficient Content Search Method Based on Local Link Replacement in Unstructured Peer-to-Peer Networks

    Nagao OGINO  Takeshi KITAHARA  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    740-749

    Peer-to-peer overlay networks can easily achieve a large-scale content sharing system on the Internet. Although unstructured peer-to-peer networks are suitable for finding entire partial-match content, flooding-based search is an inefficient way to obtain target content. When the shared content is semantically specified by a great number of attributes, it is difficult to derive the semantic similarity of peers beforehand. This means that content search methods relying on interest-based locality are more advantageous than those based on the semantic similarity of peers. Existing search methods that exploit interest-based locality organize multiple peer groups, in each of which peers with common interests are densely connected using short-cut links. However, content searches among multiple peer groups are still inefficient when the number of incident links at each peer is limited due to the capacity of the peer. This paper proposes a novel content search method that exploits interest-based locality. The proposed method can organize an efficient peer-to-peer network similar to the semantic small-world random graph, which can be organized by the existing methods based on the semantic similarity of peers. In the proposed method, topology transformation based on local link replacement maintains the numbers of incident links at all the peers. Simulation results confirm that the proposed method can achieve a significantly higher ratio of obtainable partial-match content than existing methods that organize peer groups.

  • Circuit Modeling Technique for Electrically-Very-Small Devices Based on Laurent Series Expansion of Self-/Mutual Impedances

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/14
      Vol:
    E101-B No:2
      Page(s):
    555-563

    This paper proposes a circuit modeling technique for electrically-very-small devices, e.g. electrodes for intrabody communications, coils for wireless power transfer systems, high-frequency transformers, etc. The proposed technique is based on the method of moments and can be regarded as an improved version of the partial element equivalent circuit method.

  • Multi-Dimensional Radio Channel Measurement, Analysis and Modeling for High Frequency Bands Open Access

    Minseok KIM  Jun-ichi TAKADA  Kentaro SAITO  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    293-308

    In order to utilize higher frequency bands above 6GHz, which is an important technical challenge in fifth generation mobile systems, radio propagation channel properties in a large variety of deployment scenarios should be thoroughly investigated. The authors' group has been involved in a fundamental research project aimed at investigating multiple-input-multiple-output (MIMO) transmission performance and propagation channel properties at microwave frequency above 10GHz from 2009 to 2013, and since then they have been conducting measurement and modeling for high frequency bands. This paper aims at providing comprehensive tutorial of a whole procedure of channel modeling; multi-dimensional channel sounding, propagation channel measurement, analysis, and modeling, by introducing the developed MIMO channel sounders at high frequency bands of 11 and 60GHz and presenting some measurement results in a microcell environment at 11GHz. Furthermore, this paper identifies challenges in radio propagation measurements, and discusses current/future channel modeling issues as future works.

  • Half-Height-Pin Gap Waveguide Technology and Its Applications in High Gain Planar Array Antennas at Millimeter Wave Frequency Open Access

    Jian YANG  Fangfang FAN  Parastoo TAGHIKHANI  Abbas VOSOOGH  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    285-292

    This paper presents a new form of gap waveguide technology - the half-height-pin gap waveguide. The gap waveguide technology is a new transmission line technology introduced recently, which makes use of the stopband of wave propagation created by a pair of parallel plates, one PEC (perfect electric conductor) and one PMC (perfect magnetic conductor), with an air gap in between less than a quarter of the wavelength at operation frequency. Applying this PEC/PMC gap plate structure to ridged waveguides, rectangular hollow waveguides and microstrip lines, we can have the ridged gap waveguides, groove gap waveguides and inverted gap waveguide microstrip lines, respectively, without requiring a conductive or galvanic contact between the upper PEC and the lower PMC plates. This contactless property of the gap waveguide technology relaxes significantly the manufacturing requirements for devices and antennas at millimeter wave frequencies. PMC material does not exist in nature, and an artificial PMC boundary can be made by such as periodic pin array with the pin length about a quarter wavelength. However, the quarter-wavelength pins, referred to as the full-height pins, are often too long for manufacturing. In order to overcome this difficulty, a new half-height-pin gap waveguide is introduced. The working principles and Q factors for the half-height-pin gap waveguides are described, analyzed and verified with measurements in this paper. It is concluded that half-height-pin gap waveguides have similar Q factors and operation bandwidth to the full-height-pin gap waveguides. As an example of the applications, a high gain planar array antenna at V band by using the half-height-pin gap waveguide has been designed and is presented in the paper with a good reflection coefficient and high aperture efficiency.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Particle Filtering Based TBD in Single Frequency Network

    Wen SUN  Lin GAO  Ping WEI  Hua Guo ZHANG  Ming CHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    521-525

    In this paper, the problem of target detection and tracking utilizing the single frequency network (SFN) is addressed. Specifically, by exploiting the characteristics of the signal in SFN, a novel likelihood model which avoids the measurement origin uncertain problem in the point measurement model is proposed. The particle filter based track-before-detect (PF-TBD) algorithm is adopted for the proposed SFN likelihood to detect and track the possibly existed target. The advantage of using TBD algorithm is that it is suitable for the condition of low SNR, and specially, in SFN, it can avoid the data association between the measurement and the transmitters. The performance of the adopted algorithm is examined via simulations.

  • Quantized Event-Triggered Control of Discrete-Time Linear Systems with Switching Triggering Conditions

    Shumpei YOSHIKAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    322-327

    Event-triggered control is a method that the control input is updated only when a certain triggering condition is satisfied. In networked control systems, quantization errors via A/D conversion should be considered. In this paper, a new method for quantized event-triggered control with switching triggering conditions is proposed. For a discrete-time linear system, we consider the problem of finding a state-feedback controller such that the closed-loop system is uniformly ultimately bounded in a certain ellipsoid. This problem is reduced to an LMI (Linear Matrix Inequality) optimization problem. The volume of the ellipsoid may be adjusted. The effectiveness of the proposed method is presented by a numerical example.

  • Frequency Dependency of Path Loss Between Different Floors in An Indoor Office Environment at UHF and SHF Bands

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    373-382

    This paper describes analytical results obtained for floor penetration loss characteristics and their frequency dependency by measurements in multiple frequency bands, including those above 6GHz, in an indoor office environment. Measurement and analysis results confirm that the floor penetration loss depends on two dominant components: the transmission path through floors, and the path traveling through the outside building. We also clarify that these dominant paths have different path loss characteristics and frequency dependency. The transmission path through floors rapidly attenuates with large inter-floor offsets and in high frequency bands. On the other hand, the path traveling through outside of the building attenuates monotonically as the frequency increases. Therefore, the transmission path is dominant at short inter-floor offsets and low frequencies, and the path traveling through the outside is dominant at high number of floors or high frequency. Finally, we clarify that the floor penetration loss depends on the frequency dependency of the dominant path on the basis of the path loss characteristics of each dominant path.

  • Safe-Region Generation Method for Versatile Continuous Vicinity Queries in the Road Network Distance

    Tin Nilar WIN  Htoo HTOO  Yutaka OHSAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:2
      Page(s):
    472-480

    This paper proposes a fast safe-region generation method for several kinds of vicinity queries including set k nearest neighbor (NN) queries, ordered kNN queries, reverse kNN queries, and distance range queries. When a user is driving a car on a road network, he/she wants to know about objects located in the vicinity of the car. However, the result changes according to the movement of the car, and therefore, the user needs to request up-to-date result to the server. On the other hand, frequent requests for up-to-date results cause heavy loadings on the server. To cope with this problem efficiently, the idea of the safe-region has been proposed, however, it takes long processing time in existing works. This paper proposes a fast generation method of the safe-region applicable to several types of vicinity queries. Through experimental evaluations, we demonstrate that the proposed method outperforms the existing algorithms in the processing time by one or two orders of magnitude.

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

801-820hit(6809hit)