The search functionality is under construction.

Keyword Search Result

[Keyword] QoS(402hit)

21-40hit(402hit)

  • A Flow Aggregation Method under Allowable Delay Limitation in SDN

    Takuya KOSUGIYAMA  Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    795-804

    Software-Defined Networking (SDN) can be applied for managing application flows dynamically by a logically centralized SDN controller and SDN switches. Because one SDN switch can support just a few thousand forwarding rule installations per second, it is a barrier to dynamic and scalable application flow management. For this reason, it is essential to reduce the number of application flows if they are to be successfully managed. Nowadays, since much attention has been paid to developing a network service that reduces application delay, the allowable delay of application flows has become an important factor. However, there has been no work on minimizing the number of flows while satisfying end-to-end delay of flows. In this paper, we propose a method that can aggregate flows and minimize the number flows in a network while ensuring all flows satisfy their allowable delay in accordance with QoS or SLA. Since the problem is classified as NP-hard, we propose a heuristic algorithm. We compared the aggregation effect of the proposed method, simple aggregation method and optimal solution by simulation. In addition, we clarify the characteristics of the proposed method by performing simulations with various parameter settings. The results show that the proposed method decreases the number of rules than comparative aggregation method and has very shorter computational time than optimal solution.

  • The Declarative and Reusable Path Composition for Semantic Web-Driven SDN

    Xi CHEN  Tao WU  Lei XIE  

     
    PAPER-Network

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    816-824

    The centralized controller of SDN enables a global topology view of the underlying network. It is possible for the SDN controller to achieve globally optimized resource composition and utilization, including optimized end-to-end paths. Currently, resource composition in SDN arena is usually conducted in an imperative manner where composition logics are explicitly specified in high level programming languages. It requires strong programming and OpenFlow backgrounds. This paper proposes declarative path composition, namely Compass, which offers a human-friendly user interface similar to natural language. Borrowing methodologies from Semantic Web, Compass models and stores SDN resources using OWL and RDF, respectively, to foster the virtualized and unified management of the network resources regardless of the concrete controller platform. Besides, path composition is conducted in a declarative manner where the user merely specifies the composition goal in the SPARQL query language instead of explicitly specifying concrete composition details in programming languages. Composed paths are also reused based on similarity matching, to reduce the chance of time-consuming path composition. The experiment results reflect the applicability of Compass in path composition and reuse.

  • Collaborative Quality Framework: QoE-Centric Service Operation in Collaboration with Users, Service Providers, and Network Operators Open Access

    Akira TAKAHASHI  Takanori HAYASHI  

     
    INVITED PAPER-Network

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1554-1563

    We propose a framework called “QoE-centric Service Operation,” with which we attempt to implement a means to enable the collaboration of end-users, service providers, and network providers to achieve better QoE of telecommunication services. First, we give an overview of the transition in the quality factors of voice, video, and web-browsing applications. Then, taking into account the fact that many quality factors exist not only in networks, but also in servers and terminals, we discuss how to measure, assess, analyze, and control QoE and the technical requirements in each component. We also propose approaches to meet these requirements: packet- and KPI-based QoE estimation, compensation of sparse measurement, and quality prediction based on human behavior and traffic estimation. Finally, we explain the results of our proof-of-concept study using an actual video delivery service in Japan.

  • Call Admission Controls in an IP-PBX Considering the End-to-End QoS of VoIP Calls with Silence Suppression

    Ji-Young JUNG  Jung-Ryun LEE  

     
    PAPER-Network System

      Pubricized:
    2016/08/09
      Vol:
    E100-B No:2
      Page(s):
    280-292

    A statistical call admission control (CAC) allows more calls with on-off patterns to be accepted and a higher channel efficiency to be achieved. In this paper, we propose three statistical CACs for VoIP calls with silence suppression considering the priority of each VoIP call, where the call priority is determined by the call acceptance order in an IP-PBX. We analyse the packet loss rates in an IP-PBX under the proposed strategies and express the end-to-end QoS of a VoIP call as an R-factor in a VoIP service network. The performances of the proposed CACs are evaluated using the maximum allowable number of VoIP calls while satisfying the end-to-end QoS constraint, the average QoS of acceptable VoIP calls and the channel efficiency. The advantage of the proposed statistical CACs over the non-statistical CAC is verified in terms of these three performance metrics. The results indicate that a trade-off is possible in that the maximum allowable number of VoIP calls in an IP-PBX increases as the average QoS of acceptable VoIP calls is lowered according to the proposed statistical CAC used. Nevertheless, the results allow us to verify that the channel efficiencies are the same for all the statistical CACs considered.

  • A TDMA/DCF Hybrid QoS Scheme for Ad Hoc Networks

    Jing LIN  Celimuge WU  Satoshi OHZAHATA  Toshihiko KATO  

     
    PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    42-53

    We propose a QoS scheme for ad hoc networks by combining TDMA and IEEE 802.11 DCF, and present performance evaluation results of the scheme. In the proposed scheme, the channel time is composed of two different periods, specifically TDMA period and DCF period. The TDMA period provides contention free transmission opportunities for QoS flows, and the DCF period provides contention-based access for best effort or low priority flows. We evaluate the proposed scheme for various numbers of TCP flows and different CBR data rates with QualNet simulator. Simulation results show that the protocol is able to provide an efficient solution for QoS control in ad hoc networks.

  • User-Centric Approach for Bandwidth Allocation Method Based on Quality of Experience

    Huong PHAM-THI  Takumi MIYOSHI  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1282-1290

    This paper focuses on the bandwidth allocation methods based on real user experience for web browsing applications. Because the Internet and its services are rapidly increasing, the bandwidth allocation problem has become one of the typical challenges for Internet service providers (ISPs) and network planning with respect to providing high service quality. The quality of experience (QoE) plays an important role in the success of services, and the guarantee of QoE accordingly represents an important goal in network resource control schemes. To cope with this issue, this paper proposes two user-centric bandwidth resource allocation methods for web browsing applications. The first method dynamically allocates bandwidth by considering the same user's satisfaction in terms of QoE with respect to all users in the system, whereas the second method introduces an efficient trade-off between the QoE of each user group and the average QoE of all users. The purpose of these proposals is to provide a flexible solution to reasonably allocate limited network resources to users. By considering service quality from real users' perception viewpoint, the proposed allocation methods enable us to understand actual users' experiences. Compared to previous works, the numerical results show that the proposed bandwidth allocation methods achieve the following contributions: improving the QoE level for dissatisfied users and providing a fair distribution, as well as retaining a reasonable average QoE.

  • Score Level Fusion for Network Traffic Application Identification

    Masatsugu ICHINO  Hiroaki MAEDA  Hiroshi YOSHIURA  

     
    PAPER-Internet

      Vol:
    E99-B No:6
      Page(s):
    1341-1352

    A method based on score level fusion using logistic regression has been developed that uses packet header information to classify Internet applications. Applications are classified not on the basis of the individual flows for each type of application but on the basis of all the flows for each type of application, i.e., the “overall traffic flow.” The overall traffic flow is divided into equal time slots, and the applications are classified using statistical information obtained for each time slot. Evaluation using overall traffic flow generated by five types of applications showed that its true and false positive rates are better than those of methods using feature level fusion.

  • A Fast Hierarchical Arbitration in Optical Network-on-Chip Based on Multi-Level Priority QoS

    Jie JIAN  Mingche LAI  Liquan XIAO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:4
      Page(s):
    875-884

    With the development of silicon-based Nano-photonics, Optical Network on Chip (ONoC) is, due to its high bandwidth and low latency, becoming an important choice for future multi-core networks. As a key ONoC technology, the arbitration scheme should provide differential arbitration service with high throughput and low latency for various types and priorities of traffic in CMPs. In this work, we propose a fast hierarchical arbitration scheme based on multi-level priority QoS. First, given multi-priority data buffer queue, arbiters provide differential transmissions with fair service for all nodes and guarantee the max-transmit-delay and min-communication-bandwidth for all queues. Second, arbiter adopts the transmit bound resource reservation scheme to reserve time slots for all nodes fairly, thereby achieving a throughput of 100%. Third, we propose fast arbitration with a layout of fast optical arbitration channels (FOACs) to reduce the arbitration period, thereby reducing packet transmitting delay. Simulation results show that with our hierarchical arbitration scheme, all nodes are allocated almost equal service access probability under various traffic patterns; thus, the min-communication-bandwidth and max-transmit-delay is guaranteed to be 5% and 80 cycles, respectively, under the overload demands. This scheme improves throughput by 17% compared to FeatherWeight under a self-similar traffic pattern and decreases arbitration delay by 15% compare to 2-pass arbitration, incurring a total power overhead of 5%.

  • Performance Evaluation of Virtualized LTE-EPC Data Plane with MPLS Core Using PPBP Machine-to-Machine Traffic

    Hussien M. HUSSIEN  Hussein A. ELSAYED  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    326-336

    3GPP Long Term Evolution (LTE) is one of the most advanced technologies in the wireless and mobility field because it provides high speed data and sophisticated applications. LTE was originally deployed by service providers on various platforms using separate dedicated hardware in Access radio layer and the Evolved Packet Core network layer (EPC), thereby limiting the system's flexibility and capacity provisioning. Thus, the concept of virtualization was introduced in the EPC hardware to solve the dedicated hardware platform limitations. It was also introduced in the IP Multimedia Subsystem (IMS) and Machine to Machine applications (M2M) for the same reason. This paper provides a simulation model of a virtualized EPC and virtualized M2M transport application server connected via an external IP network, which has significant importance in the future of mobile networks. This model studies the virtualized server connectivity problem, where two separate virtual machines communicate via the existing external legacy IP network. The simulation results show moderate performance, indicating that the selection of IP technology is much more critical than before. The paper also models MPLS technology as a replacement for the external IP routing mechanism to provide traffic engineering and achieve more efficient network performance. Furthermore, to provide a real network environment, Poisson Pareto Burst Process (PPBP) traffic source is carried over the UDP transport layer which matches the statistical properties of real-life M2M traffic. Furthermore, the paper proves End-to-End interoperability of LTE and MPLS running GTP and MPLS Label Forwarding information Base (LFIB) and MPLS traffic engineering respectively. Finally, it looks at the simulation of several scenarios using Network Simulator 3 (NS-3) to evaluate the performance improvement over the traditional LTE IP architecture under M2M traffic load.

  • Estimating the Number of Nodes in WLANs to Improve Throughput and QoS

    Takumi SANADA  Xuejun TIAN  Takashi OKUDA  Tetsuo IDEGUCHI  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    10-20

    WLANs have become increasingly popular and widely deployed. The MAC protocol is one of the important technology of the WLAN and affects communication efficiency directly. In this paper, focusing on MAC protocol, we propose a novel protocol that network nodes dynamically optimize their backoff process to achieve high throughput while supporting satisfied QoS. A distributed MAC protocol has an advantage that no infrastructure such as access point is necessary. On the other hand, total throughput decreases heavily and cannot guarantee QoS under high traffic load, which needs to be improved. Through theoretical analysis, we find that the average idle interval can represent current network traffic load and can be used together with estimated number of nodes for setting optimal CW. Since necessary indexes can be obtained directly through observing channel, our scheme based on those indexes will not increase any added load to networks, which makes our schemes simpler and more effective. Through simulation comparison with conventional method, we show that our scheme can greatly enhance the throughput and the QoS no matter the network is in saturated or non-saturated case, while maintaining good fairness.

  • Enhanced Bandwidth Allocation Using the Statistics of Arrival (EBACSOA): A Scheduling Algorithm for WiMAX Network

    Hann-Tzong CHERN  Chun-Chieh LEE  Jhih-Syue JHOU  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1553-1560

    In Worldwide interoperability for Microwave Access (WiMAX) network, QoS(quality of service) is provided for service flows. For this, five classes of services are defined in IEEE 802.16. They are Unsolicited Grant Service (UGS), Extended Real-Time Polling Service (ertPS), Real-Time Polling Service (rtPS), Non Real-Time Polling Service (nrtPS) and Best Effort (BE). For real-time classes, the sent packet has a deadline. As the transmission delay is over the limitation of deadline, the packet becomes useless and will be discarded. Thus, they will be served earlier and have higher probability. Nevertheless, non-real-time packets need also to be served from time to time. The scheduler should assign proper bandwidth for non-real-time flows and send the real-time packets before they are discarded. To deicide the right allocated bandwidth, the arrival rate of each flow is a good parameter for assignment. The average µ and standard deviation σ of arrival rate correspond to the long term need and variation of load for one flow. Thus, we proposed a scheduling algorithm named BAcSOA in which µ+kσ is used as a reference to allocate bandwidth with weighted round robin for one flow [5]. Different classes of flows will be given different values of k which corresponds to the priorities of classes. In this algorithm, flow with higher priority should have larger value of k. The value of k will decide the performance of this class. In this paper, we revise the algorithm to EBAcSOA and propose a mathematical way to decide the value of k for a required performance. Then, a simulation platform is proposed to decide k such that a required performance can be obtained for an operating system. This approach may be different from other researches in which there is no required performance and the performance results are obtained only for several operating points. However, the approach proposed is more practical from the view of an operator and may become an attractive point for other researchers.

  • Hybrid Station Aided Coexistence Scheme between Wireless PANs and Wireless LAN

    Fumihiro INOUE  Takayuki NISHIO  Masahiro MORIKURA  Koji YAMAMOTO  Fusao NUNO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    578-588

    The problem of coexistence between IEEE 802.11g based wireless LANs (WLANs) and IEEE 802.15.4 based wireless personal area networks (WPANs) in the 2.4GHz band is an important issue for the operation of a home energy management system (HEMS) for smart grids. This paper proposes a coexistence scheme that is called a Hybrid station aided coexistence (HYSAC) scheme to solve this problem. This scheme employs a hybrid-station (H-STA) that possesses two types of network device functions. The scheme improves the data transmission quality of the WPAN devices which transmit energy management information such as power consumption. The proposed HYSAC scheme employs WLAN control frames, which are used to assign WPAN system traffic resources. Moreover, we propose a coexistence method to achieve excellent WLAN throughput where multiple WPANs coexist with a WLAN. We theoretically derive the performance of the proposed scheme by considering the QoS support in WLAN and show that the results of the simulation and theoretical analysis are in good agreement. The numerical results show that the HYSAC scheme decreases the beacon loss rate of WPAN to less than 1% when the WLAN system consists of 10 STAs under saturated traffic conditions. Furthermore, the WLAN throughput of the proposed synchronization method is shown to be 30.6% higher than that of the HYSAC scheme without synchronization when the WLAN that consists of 10 STAs coexists with four WPANs.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • Self-Adjustable Rate Control for Congestion Avoidance in Wireless Mesh Networks

    Youngmi BAEK  Kijun HAN  

     
    PAPER-Network

      Vol:
    E97-B No:11
      Page(s):
    2368-2377

    In this paper, we investigate the problems of the established congestion solution and then introduce a self-adjustable rate control that supports quality of service assurances over multi-hop wireless mesh networks. This scheme eliminates two phases of the established congestion solution and works on the MAC layer for congestion control. Each node performs rate control by itself so network congestion is eliminated after it independently collects its vector parameters and network status parameters for rate control. It decides its transmission rate based on a predication model which uses a rate function including a congestion risk level and a passing function. We prove that our scheme works efficiently without any negative effects between the network layer and the data link layer. Simulation results show that the proposed scheme is more effective and has better performance than the existing method.

  • A QoS-Aware Differential Processing Control Scheme for OpenFlow-Based Mobile Networks

    Yeunwoong KYUNG  Taihyong YIM  Taekook KIM  Tri M. NGUYEN  Jinwoo PARK  

     
    LETTER-Information Network

      Vol:
    E97-D No:8
      Page(s):
    2178-2181

    This paper proposes a QoS-aware differential processing control (QADPC) scheme for OpenFlow-based mobile networks. QADPC classifies the input packets to the control plane by considering end terminal mobility and service type. Then, different capacities are assigned to each classified packet for prioritized processing. By means of Markov chains, QADPC is evaluated in terms of blocking probability and waiting time in the control plane. Analytical results demonstrate that QADPC offers high priority packets both lower blocking probability and less waiting time.

  • Multiplexing and Error Control Scheme for Body Area Network Employing IEEE 802.15.6

    Kento TAKABAYASHI  Hirokazu TANAKA  Chika SUGIMOTO  Ryuji KOHNO  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    564-570

    This paper proposes and investigates a multiplexing and error control scheme for Body Area Network (BAN). In February 2012, an international standard of WBAN, IEEE802.15.6, was published and it supports error control schemes. This standard also defines seven different QoS modes however, how to utilize them is not clearly specified. In this paper, an optimization method of the QoS is proposed. In order to utilize the QoS parameters, a multiplexing scheme is introduced. Then, the Hybrid ARQ in IEEE 802.15.6 is modified to employ decomposable codes and Weldon's ARQ protocol for more associations with channel conditions and required QoS. The proposed scheme has higher flexibility for optimizing the QoS parameters according to the required QoS.

  • Fanout Set Partition Scheme for QoS-Guaranteed Multicast Transmission

    Kyungmin KIM  Seokhwan KONG  Jaiyong LEE  

     
    PAPER-Network

      Vol:
    E96-B No:12
      Page(s):
    3080-3090

    Increasing demand for multicast transmission necessitates service-specific and precise quality-of-service (QoS) control. Since existing works provided limited methodologies such as best path selection, their ability is restricted by the given topology and the congestion status of the network. This paper proposes a fanout set partition (FSP) scheme to realize QoS-guaranteed multicast transmission. The FSP scheme adjusts the delay of the multicast flow by dividing its fanout set into smaller subsets. Since it is carried out based on the service requirement, service-specific QoS control is implemented. Mathematical analysis investigates the trade-offs, and the performance evaluation results show significant improvements under various traffic conditions.

  • Improving Recovery Rate for Packet Loss in Large-Scale Telecom Smart TV Systems

    Xiuyan JIANG  Dejian YE  Yiming CHEN  Xuejun TIAN  

     
    PAPER-Information Network

      Vol:
    E96-D No:11
      Page(s):
    2365-2375

    Smart TVs are expected to play a leading role in the future networked intelligent screen market. Currently, many operators are planning to deploy it in large scale in a few years. Therefore, it is necessary for smart TVs to provide high quality services for users. Packet loss is one critical reason that decreases the QoS in smart TVs. Even a very small amount of packet loss (1-2%) can decrease the QoS and affect users' experience seriously. This paper applies stochastic differential equations to analyzing the queue in the buffer of access points in smart TV multicast systems, demonstrates the reason for packet loss, and then proposes an end-to-end error recovery scheme (short as OPRSFEC) whose core algorithm is based on Reed-Solomon theory, and optimizes four aspects in finite fields: 1) Using Cauchy matrix instead of Vandermonde matrix to code and decode; 2) generating inverse matrix by table look-up; 3) changing the matrix multiplication into the table look-up; 4) originally dividing the matrix multiplication. This paper implements the scheme on the application layer, which screens the heterogeneity of terminals and servers, corrects 100% packet loss (loss rate is 1%-2%) in multicast systems, and brings very little effect on real-time users experience. Simulations demonstrate that the proposed scheme has good performances, successfully runs on Sigma and Mstar Moca TV terminals, and increases the QoS of smart TVs. Recently, OPRSFEC middleware has become a part of IPTV2.0 standard in Shanghai Telecom and has been running on the Mstar boards of Haier Moca TVs properly.

  • Distributed Resource Allocation for Multi-Cell Cognitive Radio Networks Based on Intra-Cell Overlay and Inter-Cell Underlay Spectrum Sharing

    Hailan PENG  Takeo FUJII  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1566-1576

    In this paper, we consider a multi-cell cognitive radio network (CRN), which overlays a multi-cell primary network. To manage the coexistence, a primary-willingness based coexistent architecture and a novel intra-cell spectrum overlay and inter-cell spectrum underlay sharing method are proposed. In the system, primary base stations will broadcast pilot signals and interference margins to assist the CRN for interference channel evaluation and power control. Subject to the interference margins imposed by the primary network, we define a utility (payoff) function that can represent the secondary system performance while taking into account the co-channel interference among secondary cells. A distributed resource allocation scheme is devised to guarantee the primary performance, and at the same time, maximize the secondary utility without any cooperation among cognitive base stations (CBS). Quality of Service among users is also considered by the scheme such that the instantaneous data rate for each secondary user is larger than a given minimum rate. The resource allocation problem can be decomposed into two subproblems: subchannel allocation and distributed power allocation game (DPAG). We prove that there exists a Nash equilibrium in the DPAG and the equilibrium is unique. Moreover, the DPAG is also Pareto optimal in some constrained environments, that is, no CBS can further improve its performance without impairing others. The proposed algorithm turns out to converge to an equilibrium within a small number of iterations.

  • An Efficient Relay Placement Method with Power Allocation for MIMO Two-Way Multi-Hop Networks

    Gia Khanh TRAN  Rindranirina RAMAMONJISON  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:5
      Page(s):
    1176-1186

    MIMO two-way multi-hop networks are considered in which the radio resource is fully reused in all multi-hop links to increase spectrum efficiency while the adjacent interference signals are cancelled by MIMO processing. In addition, the nodes in the multi-hop network optimize their transmit powers to mitigate the remaining overreach interference. Our main contribution in this paper is to investigate an efficient relay placement method with power allocation in such networks. We present two formulations, namely QoS-constrained optimization and SINR balancing, and solve them using a sequential geometric programming method. The proposed algorithm takes advantage of convex optimization to find an efficient configuration. Simulation results show that relay placement has an important impact on the effectiveness of power allocation to mitigate the interference. Particularly, we found that an uniform relay location is optimal only in power-limited scenarios. With optimal relay locations, significant end-to-end rate gain and power consumption reduction are achieved by SINR balancing and QoS-constrained optimization, respectively. Furthermore, the optimal number of hops is investigated in power or interference-limited scenarios.

21-40hit(402hit)