The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] REST(332hit)

21-40hit(332hit)

  • A Novel Solution to Minimize the Interest Flooding and to Improve the Content-Store Performance for NDN-Based Wireless Sensor Networks

    Muhammad MUDASIR QAZI  Rana ASIF REHMAN  Asadullah TARIQ  Byung-Seo KIM  

     
    LETTER-Information Network

      Pubricized:
    2020/11/30
      Vol:
    E104-D No:3
      Page(s):
    469-472

    Information-centric networking (ICN) provides an alternative to the traditional end-to-end communication model of the current Internet architecture by focusing on information dissemination and information retrieval. Named Data Networking (NDN) is one of the candidates that implements the idea of ICN on a practical level. Implementing NDN in wireless sensor networks (WSNs) will bring all the benefits of NDN to WSNs, making them more efficient. By applying the NDN paradigm directly to wireless multi-hop ad-hoc networks, various drawbacks are observed, such as packet flooding due to the broadcast nature of the wireless channel. To cope with these problems, in this paper, we propose an Interest called the accumulation-based forwarding scheme, as well as a novel content store architecture to increase its efficiency in terms of storing and searching data packets. We have performed extensive simulations using the ndnSIM simulator. Experimental results showed that the proposed scheme performs better when compared to another scheme in terms of the total number of Interests, the content store search time, and the network lifetime.

  • A Privacy-Preserving Machine Learning Scheme Using EtC Images

    Ayana KAWAMURA  Yuma KINOSHITA  Takayuki NAKACHI  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1571-1578

    We propose a privacy-preserving machine learning scheme with encryption-then-compression (EtC) images, where EtC images are images encrypted by using a block-based encryption method proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is first discussed, although EtC ones was already shown to be compressible as a property. The novel property allows us to directly apply EtC images to machine learning algorithms non-specialized for computing encrypted data. In addition, the proposed scheme is demonstrated to provide no degradation in the performance of some typical machine learning algorithms including the support vector machine algorithm with kernel trick and random forests under the use of z-score normalization. A number of facial recognition experiments with are carried out to confirm the effectiveness of the proposed scheme.

  • Design and Implementation of Personalized Integrated Broadcast — Broadband Service in Terrestrial Networks

    Nayeon KIM  Woongsoo NA  Byungjun BAE  

     
    LETTER-Systems and Control

      Vol:
    E103-A No:12
      Page(s):
    1621-1623

    This article proposes a dynamic linkage service which is a specific service model of integrated broadcast — broadband services based ATSC 3.0. The dynamic linkage service is useful to the viewer who wants to continue watching programs using TV or their personal devices, even after the terrestrial broadcast ends due to the start of the next regular programming. In addition, we verify the feasibility of the proposed extended dynamic linkage service through developed emulation system based on ATSC 3.0. In consideration of the personal network capabilities of the viewer environment, the service was tested with 4K/2K Ultra HD and receiving the service was finished within 4 second over intranet.

  • Revisiting a Nearest Neighbor Method for Shape Classification

    Kazunori IWATA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/09/23
      Vol:
    E103-D No:12
      Page(s):
    2649-2658

    The nearest neighbor method is a simple and flexible scheme for the classification of data points in a vector space. It predicts a class label of an unseen data point using a majority rule for the labels of known data points inside a neighborhood of the unseen data point. Because it sometimes achieves good performance even for complicated problems, several derivatives of it have been studied. Among them, the discriminant adaptive nearest neighbor method is particularly worth revisiting to demonstrate its application. The main idea of this method is to adjust the neighbor metric of an unseen data point to the set of known data points before label prediction. It often improves the prediction, provided the neighbor metric is adjusted well. For statistical shape analysis, shape classification attracts attention because it is a vital topic in shape analysis. However, because a shape is generally expressed as a matrix, it is non-trivial to apply the discriminant adaptive nearest neighbor method to shape classification. Thus, in this study, we develop the discriminant adaptive nearest neighbor method to make it slightly more useful in shape classification. To achieve this development, a mixture model and optimization algorithm for shape clustering are incorporated into the method. Furthermore, we describe several helpful techniques for the initial guess of the model parameters in the optimization algorithm. Using several shape datasets, we demonstrated that our method is successful for shape classification.

  • Experimental Validation of Link Quality Prediction Using Exact Self-Status of Mobility Robots in Wireless LAN Systems Open Access

    Riichi KUDO  Matthew COCHRANE  Kahoko TAKAHASHI  Takeru INOUE  Kohei MIZUNO  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1385-1393

    Autonomous mobility machines, such as self-driving cars, transportation robots, and automated construction machines, are promising to support or enrich human lives. To further improve such machines, they will be connected to the network via wireless links to be managed, monitored, or remotely operated. The autonomous mobility machines must have self-status based on their positioning system to safely conduct their operations without colliding with other objects. The self-status is not only essential for machine operation but also it is valuable for wireless link quality management. This paper presents self-status-based wireless link quality prediction and evaluates its performance by using a prototype mobility robot combined with a wireless LAN system. The developed robot has functions to measure the throughput and receive signal strength indication and obtain self-status details such as location, direction, and odometry data. Prediction performance is evaluated in offline processing by using the dataset gathered in an indoor experiment. The experiments clarified that, in the 5.6 GHz band, link quality prediction using self-status of the robot forecasted the throughput several seconds into the future, and the prediction accuracies were investigated as dependent on time window size of the target throughput, bandwidth, and frequency gap.

  • Speech Chain VC: Linking Linguistic and Acoustic Levels via Latent Distinctive Features for RBM-Based Voice Conversion

    Takuya KISHIDA  Toru NAKASHIKA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/08/06
      Vol:
    E103-D No:11
      Page(s):
    2340-2350

    This paper proposes a voice conversion (VC) method based on a model that links linguistic and acoustic representations via latent phonological distinctive features. Our method, called speech chain VC, is inspired by the concept of the speech chain, where speech communication consists of a chain of events linking the speaker's brain with the listener's brain. We assume that speaker identity information, which appears in the acoustic level, is embedded in two steps — where phonological information is encoded into articulatory movements (linguistic to physiological) and where articulatory movements generate sound waves (physiological to acoustic). Speech chain VC represents these event links by using an adaptive restricted Boltzmann machine (ARBM) introducing phoneme labels and acoustic features as two classes of visible units and latent phonological distinctive features associated with articulatory movements as hidden units. Subjective evaluation experiments showed that intelligibility of the converted speech significantly improved compared with the conventional ARBM-based method. The speaker-identity conversion quality of the proposed method was comparable to that of a Gaussian mixture model (GMM)-based method. Analyses on the representations of the hidden layer of the speech chain VC model supported that some of the hidden units actually correspond to phonological distinctive features. Final part of this paper proposes approaches to achieve one-shot VC by using the speech chain VC model. Subjective evaluation experiments showed that when a target speaker is the same gender as a source speaker, the proposed methods can achieve one-shot VC based on each single source and target speaker's utterance.

  • Key-Recovery Security of Single-Key Even-Mansour Ciphers

    Takanori ISOBE  Kyoji SHIBUTANI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:7
      Page(s):
    893-905

    In this paper, we explore the security of single-key Even-Mansour ciphers against key-recovery attacks. First, we introduce a simple key-recovery attack using key relations on an n-bit r-round single-key Even-Mansour cipher (r-SEM). This attack is feasible with queries of DTr=O(2rn) and $2^{ rac{2r}{r + 1}n}$ memory accesses, which is $2^{ rac{1}{r + 1}n}$ times smaller than the previous generic attacks on r-SEM, where D and T are the number of queries to the encryption function EK and the internal permutation P, respectively. Next, we further reduce the time complexity of the key recovery attack on 2-SEM by a start-in-the-middle approach. This is the first attack that is more efficient than an exhaustive key search while keeping the query bound of DT2=O(22n). Finally, we leverage the start-in-the-middle approach to directly improve the previous attacks on 2-SEM by Dinur et al., which exploit t-way collisions of the underlying function. Our improved attacks do not keep the bound of DT2=O(22n), but are the most time-efficient attacks among the existing ones. For n=64, 128 and 256, our attack is feasible with the time complexity of about $2^{n} cdot rac{1}{2 n}$ in the chosen-plaintext model, while Dinur et al.'s attack requires $2^{n} cdot rac{{ m log}(n)}{ n} $ in the known-plaintext model.

  • A Long Delay Multipath Equalization Using High Frequency Resolution Spatial Filters for SDM MIMO-OFDM Systems

    Tomoaki TAKEUCHI  Masahiro OKANO  Kenichi TSUCHIDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    476-484

    Long delay multipath is a major cause of the poor reception of digital terrestrial broadcasting signals. The direct solution to this problem in orthogonal frequency division multiplexing (OFDM) system is to make the guard interval (GI) longer than the maximum channel delay. However, given the wide variety in broadcasting channel characteristics, the worst case GI may be twice the value needed which decreases the spectral efficiency and service quality. Therefore, the solution must be implemented on the receiver side. For the next generation broadcasting system, this paper proposes a space division multiplexing (SDM) multiple-input multiple-output (MIMO)-OFDM receiver for a multipath environment whose maximum delay time exceeds the GI length. The proposed system employs the high frequency resolution spatial filters that have the same configuration as the conventional one but operate at four times higher frequency resolution. Computer simulation and laboratory test results are presented to show the effectiveness of the proposed system.

  • Characterization of Interestingness Measures Using Correlation Analysis and Association Rule Mining

    Rachasak SOMYANONTHANAKUL  Thanaruk THEERAMUNKONG  

     
    PAPER

      Pubricized:
    2020/01/09
      Vol:
    E103-D No:4
      Page(s):
    779-788

    Objective interestingness measures play a vital role in association rule mining of a large-scaled database because they are used for extracting, filtering, and ranking the patterns. In the past, several measures have been proposed but their similarities or relations are not sufficiently explored. This work investigates sixty-one objective interestingness measures on the pattern of A → B, to analyze their similarity and dissimilarity as well as their relationship. Three-probability patterns, P(A), P(B), and P(AB), are enumerated in both linear and exponential scales and each measure's values of those conditions are calculated, forming synthesis data for investigation. The behavior of each measure is explored by pairwise comparison based on these three-probability patterns. The relationship among the sixty-one interestingness measures has been characterized with correlation analysis and association rule mining. In the experiment, relationships are summarized using heat-map and association rule mined. As the result, selection of an appropriate interestingness measure can be realized using the generated heat-map and association rules.

  • Improved Analysis for SOMP Algorithm in Terms of Restricted Isometry Property

    Xiaobo ZHANG  Wenbo XU  Yan TIAN  Jiaru LIN  Wenjun XU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:2
      Page(s):
    533-537

    In the context of compressed sensing (CS), simultaneous orthogonal matching pursuit (SOMP) algorithm is an important iterative greedy algorithm for multiple measurement matrix vectors sharing the same non-zero locations. Restricted isometry property (RIP) of measurement matrix is an effective tool for analyzing the convergence of CS algorithms. Based on the RIP of measurement matrix, this paper shows that for the K-row sparse recovery, the restricted isometry constant (RIC) is improved to $delta_{K+1}< rac{sqrt{4K+1}-1}{2K}$ for SOMP algorithm. In addition, based on this RIC, this paper obtains sufficient conditions that ensure the convergence of SOMP algorithm in noisy case.

  • HeteroRWR: A Novel Algorithm for Top-k Co-Author Recommendation with Fusion of Citation Networks

    Sufen ZHAO  Rong PENG  Meng ZHANG  Liansheng TAN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/09/26
      Vol:
    E103-D No:1
      Page(s):
    71-84

    It is of great importance to recommend collaborators for scholars in academic social networks, which can benefit more scientific research results. Facing the problem of data sparsity of co-author recommendation in academic social networks, a novel recommendation algorithm named HeteroRWR (Heterogeneous Random Walk with Restart) is proposed. Different from the basic Random Walk with Restart (RWR) model which only walks in homogeneous networks, HeteroRWR implements multiple random walks in a heterogeneous network which integrates a citation network and a co-authorship network to mine the k mostly valuable co-authors for target users. By introducing the citation network, HeteroRWR algorithm can find more suitable candidate authors when the co-authorship network is extremely sparse. Candidate recommenders will not only have high topic similarities with target users, but also have good community centralities. Analyses on the convergence and time efficiency of the proposed approach are presented. Extensive experiments have been conducted on DBLP and CiteSeerX datasets. Experimental results demonstrate that HeteroRWR outperforms state-of-the-art baseline methods in terms of precision and recall rate even in the case of incorporating an incomplete citation dataset.

  • A Construction of Sparse Deterministic Measurement Matrices

    Yubo LI  Hongqian XUAN  Dongyan JIA  Shengyi LIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1575-1579

    In this letter, a construction of sparse measurement matrices is presented. Based on finite fields, a base matrix is obtained. Then a Hadamard matrix or a discrete Fourier transform (DFT) matrix is nested in the base matrix, which eventually formes a new deterministic measurement matrix. The coherence of the proposed matrices is low, which meets the Welch bound asymptotically. Thus these matrices could satisfy the restricted isometry property (RIP). Simulation results demonstrate that the proposed matrices give better performance than Gaussian counterparts.

  • Mapping a Quantum Circuit to 2D Nearest Neighbor Architecture by Changing the Gate Order Open Access

    Wakaki HATTORI  Shigeru YAMASHITA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/25
      Vol:
    E102-D No:11
      Page(s):
    2127-2134

    This paper proposes a new approach to optimize the number of necessary SWAP gates when we perform a quantum circuit on a two-dimensional (2D) NNA. Our new idea is to change the order of quantum gates (if possible) so that each sub-circuit has only gates performing on adjacent qubits. For each sub-circuit, we utilize a SAT solver to find the best qubit placement such that the sub-circuit has only gates on adjacent qubits. Each sub-circuit may have a different qubit placement such that we do not need SWAP gates for the sub-circuit. Thus, we insert SWAP gates between two sub-circuits to change the qubit placement which is desirable for the following sub-circuit. To reduce the number of such SWAP gates between two sub-circuits, we utilize A* algorithm.

  • Attention-Guided Region Proposal Network for Pedestrian Detection

    Rui SUN  Huihui WANG  Jun ZHANG  Xudong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/08
      Vol:
    E102-D No:10
      Page(s):
    2072-2076

    As a research hotspot and difficulty in the field of computer vision, pedestrian detection has been widely used in intelligent driving and traffic monitoring. The popular detection method at present uses region proposal network (RPN) to generate candidate regions, and then classifies the regions. But the RPN produces many erroneous candidate areas, causing region proposals for false positives to increase. This letter uses improved residual attention network to capture the visual attention map of images, then normalized to get the attention score map. The attention score map is used to guide the RPN network to generate more precise candidate regions containing potential target objects. The region proposals, confidence scores, and features generated by the RPN are used to train a cascaded boosted forest classifier to obtain the final results. The experimental results show that our proposed approach achieves highly competitive results on the Caltech and ETH datasets.

  • Vision Based Nighttime Vehicle Detection Using Adaptive Threshold and Multi-Class Classification

    Yuta SAKAGAWA  Kosuke NAKAJIMA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1235-1245

    We propose a method that detects vehicles from in-vehicle monocular camera images captured during nighttime driving. Detecting vehicles from their shape is difficult at night; however, many vehicle detection methods focusing on light have been proposed. We detect bright spots by appropriate binarization based on the characteristics of vehicle lights such as brightness and color. Also, as the detected bright spots include lights other than vehicles, we need to distinguish the vehicle lights from other bright spots. Therefore, the bright spots were distinguished using Random Forest, a multiclass classification machine-learning algorithm. The features of bright spots not associated with vehicles were effectively utilized in the vehicle detection in our proposed method. More precisely vehicle detection is performed by giving weights to the results of the Random Forest based on the features of vehicle bright spots and the features of bright spots not related to the vehicle. Our proposed method was applied to nighttime images and confirmed effectiveness.

  • A Fast Packet Loss Detection Mechanism for Content-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1842-1852

    In this paper, we propose a packet loss detection mechanism called Interest ACKnowledgement (ACK). Interest ACK provides information on the history of successful Interest packet receptions at a repository (i.e., content provider); this information is conveyed to the corresponding entity (i.e., content consumer) via the header of Data packets. Interest ACKs enable the entity to quickly and accurately detect Interest and Data packet losses in the network. We conduct simulations to investigate the effectiveness of Interest ACKs under several scenarios. Our results show that Interest ACKs are effective for improving the adaptability and stability of CCN with window-based flow control and that packet losses at the repository can be reduced by 10%-20%. Moreover, by extending Interest ACK, we propose a lossy link detection mechanism called LLD-IA (Lossy Link Detection with Interest ACKs), which is a mechanism for an entity to estimate the link where the packet was discarded in a network. Also, we show that LLD-IA can effectively detect links where packets were discarded under moderate packet loss ratios through simulation.

  • Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing

    Xiao XUE  Song XIAO  Hongping GAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/02/18
      Vol:
    E102-B No:8
      Page(s):
    1565-1578

    In compressive sensing theory (CS), the restricted isometry property (RIP) is commonly used for the measurement matrix to guarantee the reliable recovery of sparse signals from linear measurements. Although many works have indicated that random matrices with excellent recovery performance satisfy the RIP with high probability, Toeplitz-structured matrices arise naturally in real scenarios, such as applications of linear time-invariant systems. Thus, the corresponding measurement matrix can be modeled as a Toeplitz (partial) structured matrix instead of a completely random matrix. The structure characteristics introduce coherence and cause the performance degradation of the measurement matrix. To enhance the recovery performance of the Toeplitz structured measurement matrix in multichannel convolution source separation, an efficient construction of measurement matrix is presented, referred to as sparse random block-banded Toeplitz matrix (SRBT). The sparse signal is pre-randomized by locally scrambling its sample locations. Then, the signal is subsampled using the sparse random banded matrix. Finally, the mixing measurements are obtained. Based on the analysis of eigenvalues, the theoretical results indicate that the SRBT matrix satisfies the RIP with high probability. Simulation results show that the SRBT matrix almost matches the recovery performance of random matrices. Compared with the existing banded block Toeplitz matrix, SRBT significantly improves the probability of successful recovery. Additionally, SRBT has the advantages of low storage requirements and fast computation in reconstruction.

  • Mutual Interference Suppression and Signal Restoration in Automotive FMCW Radar Systems

    Sohee LIM  Seongwook LEE  Jung-Hwan CHOI  Jungmin YOON  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/12/11
      Vol:
    E102-B No:6
      Page(s):
    1198-1208

    This paper presents an interference suppression and signal restoration technique that can create the clean signals required by automotive frequency-modulated continuous wave radar systems. When a radar signal from another radar system interferes with own transmitted radar signal, the target detection performance is degraded. This is because the beat frequency corresponding to the target cannot be estimated owing to the increase in the noise floor. In this case, advanced weighted-envelope normalization or wavelet denoising can be used to mitigate the effect of the interference; however, these methods can also lead to the loss of the desired signal containing the range and velocity information of the target. Therefore, we propose a method based on an autoregressive model to restore a signal damaged by mutual interference. The method uses signals that are not influenced by the interference to restore the signal. In experiments conducted using two different automotive radar systems, our proposed method is demonstrated to effectively suppress the interference and restore the desired signal. As a result, the noise floor resulting from the mutual interference was lowered and the beat frequency corresponding to the desired target was accurately estimated.

  • A Robust Indoor/Outdoor Detection Method Based on Spatial and Temporal Features of Sparse GPS Measured Positions

    Sae IWATA  Kazuaki ISHIKAWA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER-Intelligent Transport System

      Vol:
    E102-A No:6
      Page(s):
    860-865

    Cell phones with GPS function as well as GPS loggers are widely used and we can easily obtain users' geographic information. Now classifying the measured GPS positions into indoor/outdoor positions is one of the major challenges. In this letter, we propose a robust indoor/outdoor detection method based on sparse GPS measured positions utilizing machine learning. Given a set of clusters of measured positions whose center position shows the user's estimated stayed position, we calculate the feature values composed of: positioning accuracy, spatial features, and temporal feature of measured positions included in every cluster. Then a random forest classifier learns these feature values of the known data set. Finally, we classify the unknown clusters of measured positions into indoor/outdoor clusters using the learned random forest classifier. The experiments demonstrate that our proposed method realizes the maximum F1 measure of 1.000, which classifies measured positions into indoor/outdoor ones with almost no errors.

  • Visibility Restoration via Smoothing Speed for Vein Recognition

    Wonjun KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/02/08
      Vol:
    E102-D No:5
      Page(s):
    1102-1105

    A novel image enhancement method for vein recognition is introduced. Inspired by observation that the intensity of the vein vessel changes rapidly during the smoothing process compared to that of background (i.e., skin tissue) due to its thin and long shape, we propose to exploit the smoothing speed as a restoration weight for the vein image enhancement. Experimental results based on the CASIA multispectral palm vein database demonstrate that the proposed method is effective to improve the performance of vein recognition.

21-40hit(332hit)