The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

2361-2380hit(2923hit)

  • Resource Sharing Scheme for Cellular Data Services with Differentiated QoS

    Jiann-Liang CHEN  Han-Chieh CHAO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E83-B No:11
      Page(s):
    2545-2549

    To provide cellular data services with differentiated QoS, a shared resource scheme, based on the optimization theory and LaGrange λ-calculus was developed. This scheme can generate a fair schedule for a diverse mix of traffic with diverse QoS requirements in a limited radio spectrum. We define the acceptance indication, AI, as the QoS measurement for the shared resource scheme. The experimental results show that this approach outperforms other existing schemes.

  • Turing Machine Equivalence of Time Asymmetric Choice Nets

    Atsushi OHTA  Kohkichi TSUJI  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2278-2281

    Petri net is a mathematical model for concurrent systems. Petri net is known to have less modeling power than that of Turing machine. Lack of zero testing ability is the main reason of this fact. Indeed, every extended Petri net model that can perform zero testing is equivalent to Turing machine. Time Petri net is one of the models with ability of zero testing. It is of theoretical interest what structure enables zero testing. This paper shows that time asymmetric choice net can simulate register machines. The result implies reachability problem of this subclass of time Petri net is undecidable.

  • Development and Performance of the Real-Time VLBI Correlator (RVC)

    Satoru IGUCHI  Noriyuki KAWAGUCHI  Yasuhiro MURATA  Hideyuki KOBAYASHI  Kenta FUJISAWA  Tetsuya MIKI  

     
    PAPER-Sensing

      Vol:
    E83-B No:11
      Page(s):
    2527-2536

    The Real-time VLBI Correlator (RVC) is a new type processor for the Very-Long-Baseline Interferometry (VLBI). This correlator was primarily designed for supporting the VLBI Space Observatory Programme (VSOP). Two particular techniques, the fringe rotator after correlation and the lag-time extension technique, are newly developed for the RVC. The correlation circuit size of VLBI correlator is reduced to half by introducing the new fringe rotator, and it makes possible to realize a large delay window being essential in finding a cross correlation in real-time. The delay window can be changed flexibly with the lag-time extension technique, and its technique is useful to detect the fringe peak in a VSOP observation. The new correlator was installed at the Usuda Deep Space Center in Japan, and is used in VSOP and other domestic VLBI observations. In this paper, the key features of the Real-time VLBI Correlator (RVC) focusing on these advanced techniques are presented, and the results of its performance test are shown.

  • Robust L-Gain Filtering for Structured Uncertain Systems

    Wanil KIM  Sangchul WON  

     
    LETTER-Systems and Control

      Vol:
    E83-A No:11
      Page(s):
    2385-2389

    This paper addresses the L-gain filtering problem for continuous-time linear systems with time-varying structured uncertainties and non-zero initial conditions. We propose a full order linear filter that renders the L-gain from disturbance to filtering error within a prescribed level by solving a linear matrix inequality (LMI) feasibility problem. The filter gain is specified by the solution to a set of LMI's. A numerical example is given to illustrate the proposed method.

  • Performance Improvement by Packet Buffering in Mobile IP Based Networks

    Doo Seop EOM  Masashi SUGANO  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER-Internet

      Vol:
    E83-B No:11
      Page(s):
    2501-2512

    It is well-known that TCP often experiences severe performance degradation in mobile networks since packet losses not related to network congestion occur frequently due to host mobility. In this paper, we propose a new packet buffering method to address such a problem without the scalability problem in Mobile IP based networks. For this purpose, we first investigate the performance of TCP Tahoe without considering packet buffering through the simulation. Our simulation result shows that in most cases, the smooth handoff by the route optimization extension of Mobile IP standard cannot prevent the degradation of TCP performance due to handoffs, although it is designed to reduce the number of packets dropped during the handoff. It also shows that in utilizing the route optimization extension, the TCP performance sometimes becomes worse even than the case of the base Mobile IP unless its smooth handoff makes less than four packets be dropped during the handoff. Such results mean that at least for TCP, the smooth handoff is not useful unless the route optimization extension supports the buffering method, which makes handoffs be transparent to transport layer protocols by recovering the packets dropped during the handoff. We then investigate the effects of packet buffering on the performance of TCP. We modify the route optimization extension in order to support packet buffering at the base station, but it is a very minor change. Finally, we discuss some problems that should be addressed to recover the packets dropped during the handoff by the buffering method without giving a worse impact on the performance of TCP, and propose our solution to solve those problems.

  • Path Accommodation Methods for Unidirectional Rings with Optical Compression TDM

    Kazuhiro GOKYU  Ken-ichi BABA  Masayuki MURATA  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2294-2303

    In this paper, we propose path accommodation methods for unidirectional rings based on an optical compression time-division multiplexing (OCTDM) technology. We first derive a theoretical lower bound on the numbers of slots and frames, in order to allocate all paths among nodes. Three path accommodation algorithms for the all-optical access are next proposed to achieve the lower bound as closely as possible. Path splitting is next considered to improve the traffic accommodation. Finally, we analyze the packet delay time for given numbers of slots/frames, which are decided by our proposed algorithms. Numerical examples are also shown to examine the effectiveness of our proposed algorithms including path accommodation and path splitting methods.

  • Image Compression by New Sub-Image Block Classification Techniques Using Neural Networks

    Newaz M. S. RAHIM  Takashi YAHAGI  

     
    LETTER-Image

      Vol:
    E83-A No:10
      Page(s):
    2040-2043

    A new method of classification of sub-image blocks for digital image compression purposes using neural network is proposed. Two different classification algorithms are used to show their greater effectiveness than the conventional classification techniques. Simulation results are presented which demonstrate the effectiveness of the new technique.

  • Optimal Design of Survivable Photonic Transport Networks of Interconnected WDM Self-Healing Ring Systems

    Yasuhiro MIYAO  Hiroyuki SAITO  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2261-2269

    This paper proposes an optimal design scheme for photonic transport networks that interconnect multiple wavelength division multiplexing (WDM) self-healing ring systems by using optical cross connects (OXCs). To calculate the number of OXCs required in each hub to interconnect these ring systems, a virtual mesh network is generated, on which the route of each optical path (OP) going through multiple adjacent rings ("ring" is defined as circle in network topology) is determined based on a list of hubs. An integer-programming-based design problem is then formulated that minimizes the overall cost of facilities including OXCs as well as ring systems to accommodate a given demand. By solving this problem, we can simultaneously optimize required number of ring systems in each ring, wavelength assignment within each individual bidirectional ring system, required number of OXCs in each hub, and capacity to be allocated to each OP. Numerical examples show that the ring-based network is more cost-effective than the mesh restorable network when the cost of an OADM is lower than that of an OXC, and the OXC-to-fiber cost-coefficient ratio is sufficiently large.

  • Bidirectional Single-Fiber Multiwavelength Ring Networks

    Keang-Po HO  Shien-Kuei LIAW  Frank F.-K. TONG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2245-2252

    High-capacity multiwavelength ring networks with bidirectional WDM add/drop multiplexer (WADM) having built-in EDFAs is analyzed and demonstrated. All WDM channels can be added/dropped independently in each direction. The capacity of a bidirectional ring is found to be approximately twice that of an unidirectional ring. An eight-wavelength WADM is demonstrated for a data rate of 10 Gb/s per channel, providing an overall capacity of 80 Gb/s. The performance of the add/drop multiplexer is not degraded by backward backscattering light. The same WADM is also demonstrated to be able to serve as a bidirectional in-line optical amplifier.

  • Novel Semiconductor Technologies of ZnO Films towards Ultraviolet LEDs and Invisible FETs

    Akira OHTOMO  Masashi KAWASAKI  

     
    REVIEW PAPER

      Vol:
    E83-C No:10
      Page(s):
    1614-1617

    We present novel semiconductor technologies of ZnO epitaxial films with using laser molecular-beam epitaxy method. Exciting optical properties such as room temperature lasing in ZnO nanocrystalline films and quantum size effects in ZnO/MgxZn1-xO superlattices were observed. By developing crystalline quality with using lattice-matched substrates, we could control resistivity of the doped ZnO films from 10-3 Ωcm to 104 Ωcm. These results would provide us an opportunity to construct a monolithic array consisted of light emitting devices and field effect transistors towards a possible flat panel display.

  • A Comparative Study of Mesh and Multi-Ring Designs for Survivable WDM Networks

    Lunchakorn WUTTISITTIKULKIJ  Charoenchai BAWORNTUMMARAT  Thanyaporn IAMVASANT  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2270-2277

    In this paper, two distinct optical network design approaches, namely mesh and multi-ring, for survivable WDM networks are investigated. The main objective is to compare these two design approaches in terms of network costs so that their merits in practical environments can be identified. In the mesh network design, a new mathematical model based on integer liner programming (ILP) and a heuristic algorithm are presented for achieving a minimal cost network design. In the multi-ring network design, a heuristic algorithm that can be applied to large network problems is proposed. The influence of wavelength conversion and the number of wavelengths multiplexed in a fiber on system designs are also discussed. Based on the simulation results, the redundancy quantities required for full protection in multi-ring approach are significantly larger in comparison to the minimal cost mesh counterpart.

  • Maximum Likelihood Successive State Splitting Algorithm for Tied-Mixture HMnet

    Alexandre GIRARDI  Harald SINGER  Kiyohiro SHIKANO  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Vol:
    E83-D No:10
      Page(s):
    1890-1897

    This paper shows how a divisive state clustering algorithm that generates acoustic Hidden Markov models (HMM) can benefit from a tied-mixture representation of the probability density function (pdf) of a state and increase the recognition performance. Popular decision tree based clustering algorithms, like for example the Successive State Splitting algorithm (SSS) make use of a simplification when clustering data. They represent a state using a single Gaussian pdf. We show that this approximation of the true pdf by a single Gaussian is too coarse, for example a single Gaussian cannot represent the differences in the symmetric parts of the pdf's of the new hypothetical states generated when evaluating the state split gain (which will determine the state split). The use of more sophisticated representations would lead to intractable computational problems that we solve by using a tied-mixture pdf representation. Additionally, we constrain the codebook to be immutable during the split. Between state splits, this constraint is relaxed and the codebook is updated. In this paper, we thus propose an extension to the SSS algorithm, the so-called Tied-mixture Successive State Splitting algorithm (TM-SSS). TM-SSS shows up to about 31% error reduction in comparison with Maximum-Likelihood Successive State Split algorithm (ML-SSS) for a word recognition experiment.

  • Metal-Glazed Thick-Film Resistors Fired at Low Temperature on Glass Substrate

    Ikuo KANEKO  Sadayoshi TAGUCHI  Toshiyuki KASHIWAGI  

     
    PAPER-Electronic Components

      Vol:
    E83-C No:10
      Page(s):
    1669-1676

    Conventional metal-glazed thick-film resistors are applied to Hybrid Integrated Circuits, chip resistors and others. These resistors are usually fired at a high temperature of around 850C on ceramic substrates. Recently, however, attempts have been made to fire some metal-glazed thick-film resistors at lower temperatures on glass substrates for application as the control resistors for the discharge current of dc Plasma Display Panels (PDPs). We have attempted to realize such low-firing-temperature thick-film resistors using Pb2Ru2O7-x as conductive particles, two kinds of lead-borosilicate glasses as binders, and three kinds of metallic oxide as additives, which are fired at 580C on a soda lime glass substrate. The electrical properties of the specimens, 16 kinds in all, fabricated from various combinations of binder glasses, additives and electrode materials have been measured. Effective dimensions of the specimen resistor are 0.25 0.25 mm2 or less in surface area, since extremely small size is required by PDPs. The effect of the combination of additive and binder glass on the conductive particles of Pb2Ru2O7-x has been examined in detail, together with the affinity for electrical conjunction between resistor and electrode.

  • Network Control and Management for the Next Generation Internet

    John Y. WEI  Chang-Dong LIU  Sung-Yong PARK  Kevin H. LIU  Ramu S. RAMAMURTHY  Hyogon KIM  Mari W. MAEDA  

     
    INVITED PAPER

      Vol:
    E83-B No:10
      Page(s):
    2191-2209

    The Next Generation Internet Initiative was launched in the U.S. to advance key networking technologies that will enable a new wave of applications on the Internet. Now, in its third year, the program has launched and fostered over one hundred new research projects in partnership with academic, industrial and government laboratories. One key research area that has been emphasized within the program is the next-generation optical networking. Given the ever increasing demand for network bandwidth, and the recent phenomenal advances in WDM technologies, the Next Generation Internet is expected to be an IP-based optical WDM network. As IP over WDM networking technologies mature, a number of important architectural, management and control issues have surfaced. These issues need to be addressed before a true Next Generation Optical Internet can emerge. This paper provides a brief introduction to the overall goals and activities of DARPA's NGI program and describes the key architectural, management, and control issues for the Optical Internet. We review the different IP/WDM networking architectural models and their tradeoffs. We outline and discuss several management and control issues and possible solutions related to the configuration, fault, and performance management of IP over dynamic WDM networks. We present an analysis and supporting simulation results demonstrating the potential benefits of dynamic IP over WDM networks. We then discuss the issues related to IP/WDM traffic engineering in more detail, and present the approach taken in the NGI SuperNet Network Control and Management Project funded by DARPA. In particular, we motivate and present an innovative integrated traffic-engineering framework for re-configurable IP/WDM networks. It builds on the strength of Multi-Protocol Label Switching (MPLS) for fine-grain IP load balancing, and on the strength of Re-configurable WDM networking for reducing the IP network's weighted-hop-distance, and for expanding the bottleneck bandwidth.

  • Polyimide Waveguides Equipped with Dielectric Multilayer Filter

    Mitsuo UKECHI  Takuya MIYASHITA  Ayumi TAKAHASHI  Ryoji KAKU  Yumiko KOMINE  Takao MASE  Tetsuya NISHIMURA  Satoshi HIRAYAMA  Kenji KAMEDA  Kazuhiko ITO  

     
    LETTER

      Vol:
    E83-C No:9
      Page(s):
    1458-1459

    We report a directly deposited dielectric multilayer onto an end face of a fluorinated polyimide optical waveguide by ion beam sputtering process. This dielectric multilayer (Ta2O5/SiO2) acts on a wavelength separation filter which passes 1310 nm wavelength signal and reflects 1550 nm wavelength signal.

  • Three-Dimensional Fully Polarimetric Imaging in Snowpack by a Synthetic Aperture FM-CW Radar

    Toshifumi MORIYAMA  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    1963-1968

    This paper presents a three-dimensional polarimetric detection result of targets buried in snowpack by synthetic aperture FM-CW radar system. Since the FM-CW radar is suitable for short range sensing and can be equipped with fully polarimetric capability, we further extended it to a polarimetric three-dimensional SAR system. A field experiment was carried out to image and detect targets in a natural snowpack of 280 cm deep. The polarimetric detection and identification schemes are the polarimetric filtering, three-component decomposition, and the power polarization anisotropy coefficient. These approaches to acquired data show the usefulness of three-dimensional polarimetric FM-CW SAR system.

  • Concept of Backlog Balancing and Its Application to Flow Control and Congestion Control in High-Speed Networks

    Xiaolei GUO  Tony T. LEE  Hung-Hsiang Jonathan CHAO  

     
    PAPER-Network

      Vol:
    E83-B No:9
      Page(s):
    2100-2116

    Flow control algorithm in high speed networks is a resource-sharing policy implemented in a distributed manner. This paper introduces a novel concept of backlog balancing and demonstrates its application to network flow control and congestion control by presenting a rate-based flow control algorithm for ATM networks. The aim of flow control is to maximize the network utilization for achieving high throughput with tolerable delay for each virtual circuit (VC). In a resource-sharing environment, this objective may also cause network congestion when a cluster of aggressive VC's are contending for the same resource at a particular node. The basic idea of our algorithm is to adjust the service rate of each node along a VC according to backlog discrepancies between neighboring nodes (i.e., to reduce the backlog discrepancy). The handshaking procedure between any two consecutive nodes is carried out by a link-by-link binary feedback protocol. Each node will update its service rate periodically based on a linear projection model of the flow dynamics. The updated service rate per VC at a node indicates its explicit demand of bandwidth, so a service policy implementing dynamic bandwidth allocation is introduced to enforce such demands. Simulation study has validated the concept and its significance in achieving the goal of flow control and yet preventing network congestion at the same time.

  • Response of Microwave on Bare Soil Moisture and Surface Roughness by X-Band Scatterometer

    Dharmendra SINGH  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  Keshev Prasad SINGH  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    2038-2043

    This paper describes an individual effect of soil moisture (mg) and surface roughness (hrms) of bare soil on the back scattering coefficient (σ0) at the X-band frequency. The study contributes to the design of an efficient microwave sensor. For this purpose, experimentally observed data was utilized to provide a composite σ0 equation model accounting for individual effect in regression analysis. The experimental data are compared with Small Perturbation Method. It is observed that the X-band gives better agreement up to incidence angle 50 for HH-polarization and 60 for VV-polarization as compared to the C-band. The lower angles of incidence give better results than the higher angles for observing mg at the X-band. The multiple and partial regression analyses have also carried out for predicting the dependence of scattering coefficient (σ0) on mg and hrms more accurately. The analyses suggest that the dependence of dielectric constant (i.e., mg) is much more significant in comparison to surface roughness at lower angles of incidence for both like polarizations. The results propose the suitable angle of incidence for observing bare surface roughness and soil moisture at the X-band. All these data can be used as a reference for satellite or spaceborne sensors.

  • Scheduling Loop Applications in Software Distributed Shared Memory Systems

    Tyng-Yeu LIANG  Ce-Kuen SHIEH  Deh-Cheng LIU  

     
    PAPER-Algorithms

      Vol:
    E83-D No:9
      Page(s):
    1721-1730

    This paper first examines the issues related to scheduling loop applications on a software distributed shared memory (DSM) system. Then, a dynamic scheduling scheme is developed based on the examined issues to enhance the performance of loop applications on DSM. Compared with previous works, the proposed scheme has several specialties. The first is that the workload of processors can be effectively balanced even when the computational capabilities of processors and the computational needs of threads are not identical. The second is it divides thread mapping into two phases, each with one consideration, i.e., load balance or communication cost, and adopts thread migration and exchange in the two phases, respectively. The third is the exploitation of data sharing among threads to reduce data-consistency communication, and the last is to attack the negative effect of the unnecessary inter-node sharing caused by thread re-mapping. The proposed scheme has been implemented on a page-based DSM system called Cohesion. Our experiments show that the proposed scheme is more effective to improve the performance of the test programs than related schemes.

  • A Scheduling Policy for Blocked Programs in Multiprogrammed Shared-Memory Multiprocessors

    Inbum JUNG  Jongwoong HYUN  Joonwon LEE  

     
    PAPER-Software Systems

      Vol:
    E83-D No:9
      Page(s):
    1762-1771

    Shared memory multiprocessors are frequently used as compute servers with multiple parallel programs executing at the same time. In such environments, an operating system switches the contexts of multiple processes. When the operating system switches contexts, in addition to the cost of saving the context of the process being swapped out and that of bringing in the context of the new process to be run, the cache performance of processors also can be affected. The blocked algorithm improves cache performance by increasing the locality of memory references. In a blocked program using this algorithm, program performance can be significantly affected by the reuse of a block loaded into a cache memory. If frequent context switching replaces the block before it is completely reused, the cache locality in a blocked program cannot be successfully exploited. To address this problem, we propose a preemption-safe policy to utilize the cache locality of blocked programs in a multiprogrammed system. The proposed policy delays context switching until a block is fully reused within a program, but also compensates for the monopolized processor time on processor scheduling mechanisms. Our simulation results show that in a situation where blocked programs are run on multiprogrammed shared-memory multiprocessors, the proposed policy improves the performance of these programs due to a decrease in cache misses. In such situations, it also has a beneficial impact on the overall system performance due to the enhanced processor utilization.

2361-2380hit(2923hit)