The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

13421-13440hit(16314hit)

  • A Fast Synchronization Scheme of OFDM Signals for High-Rate Wireless LAN

    Takeshi ONIZAWA  Masato MIZOGUCHI  Masahiro MORIKURA  Toshiaki TANAKA  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:2
      Page(s):
    455-463

    This paper proposes a fast synchronization scheme with a short preamble signal for high data rate wireless LAN systems using orthogonal frequency division multiplexing (OFDM). The proposed OFDM burst format for fast synchronization and the demodulator for the proposed OFDM burst format are described. The demodulator, which offers automatic frequency control and symbol timing detection, enables us to shorten the preamble length to one quarter that of a conventional one. Computer simulation results show that the degradation in required Eb/N0 due to the synchronization scheme is less than 1 dB in a selective Rayleigh fading channel.

  • Switching Node Consideration from the Aspect of Transmission Characteristics in Wavelength Assignment Photonic Network (WAPN)

    Tadahiko YASUI  Yoshiaki NAKANO  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    306-316

    By adopting a network architecture in which not only a calling but also a called terminal can select a wavelength, a novel WDM network becomes possible. This we call Wavelength Assignment Photonic Network (WAPN). In this network wavelengths are a kind of network resources and according to requests from terminals, wavelengths are allocated or assigned to calls. In the system a wavelength used for a call is to be used for another call after the call is terminated. By supplying wavelengths to the home, a bitrate-free, protocol free or even transmission method free network can be realized. In this paper, from a viewpoint of S/N or Q factor, WAPN is evaluated with special focus on the node architecture--i. e. , from the viewpoint of node size, number of switching stages, crosstalk level,and losses, because the allowable node size is the crucial issue to decide the whole network capacity. After brief explanations of this proposed system, the model for system evaluations will be established and a node system is to be evaluated for some practical parameter values considering especially traffic characteristics of a node. As a result of this study a node system with capacity more than 100 thousands erl (about 20 Tbps throughput) can be constructed using present available technologies, which will enable us to construct large WAPN network with radius of 2,000 km and subscribers of about 50 millions.

  • Region-Based Prediction Coding for Compression of Noisy Synthetic Images

    Yu LIU  Masayuki NAKAJIMA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    461-467

    Noise greatly degrades the image quality and performance of image compression algorithms. This paper presents an approach for the representation and compression of noisy synthetic images. A new concept region-based prediction (RBP) model is first introduced, and then the RBP model is utilized on noisy images. In the conventional predictive coding techniques, the context for prediction is always composed of individual pixels surrounding the pixel to be processed. The RBP model uses regions instead of individual pixels as the context for prediction. An algorithm for the implementation of RBP is proposed and applied to noisy synthetic images in our experiments. Using RBP to find the residual data and encoding them, we achieve a bit rate of 1.10 bits/pixel for the noisy synthetic image. The decompressed image achieves a peak SNR of 42.59 dB. Compared with a peak SNR of 41.01 dB for the noisy synthetic image, the quality of the decompressed synthetic image is improved by 1.58 dB in the MSE sense. In contrast to our proposed compression algorithm with its improvement in image quality, conventional coding methods can compress image data only at the expense of lower image quality. At the same bit rate, the image compression standard JPEG provides a peak SNR of 33.17 dB for the noisy synthetic image, and the conventional median filter with a 33 window provides a peak SNR of 25.89 dB.

  • Polymeric 116 Arrayed Waveguide Grating Multiplexer Using Fluorinated Poly(Arylene Ethers)at 1550 nm

    Joo-Heon AHN  Hyung-Jong LEE  Wol-Yon HWANG  Min-Cheol OH  Myung-Hyun LEE  Seon Gyu HAN  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic WDM Devices

      Vol:
    E82-B No:2
      Page(s):
    406-408

    A 116 arrayed waveguide grating multiplexer operating around 1550 nm has been realized using newly synthesized fluorinated poly(arylene ethers). The channel spacing is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 17-20 dB and the cross talk is less than -15 dB. The propagation loss of a rib waveguide is less than 0.5 dB/cm at 1550 nm.

  • Photonic Packet Switching: An Overview

    Rodney S. TUCKER  Wen De ZHONG  

     
    INVITED PAPER-Packet and ATM Switching

      Vol:
    E82-B No:2
      Page(s):
    254-264

    The application of photonic technologies to packet switching offers the potential of very large switch capacity in the terabit per second range. The merging of packet switching with photonic technologies opens up the possibility of packet switching in transparent photonic media, in which packets remain in optical form without undergoing optoelectronic conversion. This paper reviews recent work on photonic packet switching. Different approaches to photonic packet switching and key design issues are discussed.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    387-389

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-B No:2
      Page(s):
    239-245

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • Distributed Coupling of Dual-Modes in a Circular Resonator and Low-Profile Dielectric Disk Resonator BPF

    Ikuo AWAI  Arun Chandra KUNDU  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:2
      Page(s):
    393-401

    A novel method is proposed to calculate the distributed coupling of dual-modes in a circular resonator. New theoretical expressions are devised to accumulate the infinitesimal coupling between orthogonal modes and their validity is justified by the FD-TD analysis and experiments. The distributed coupling concept of a circular disk resonator is applied to a square disk resonator to calculate its resonant frequency. We have fabricated two types of low-profile dual-mode square dielectric disk resonator BPF, using high dielectric constant material (εr = 93) having a dimension of 5 mm 5 mm 1 mm. The filter characteristics are explained by the transmission line circuit model.

  • Admissibility of Memorization Learning with Respect to Projection Learning in the Presence of Noise

    Akira HIRABAYASHI  Hidemitsu OGAWA  Yukihiko YAMASHITA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:2
      Page(s):
    488-496

    In learning of feed-forward neural networks, so-called 'training error' is often minimized. This is, however, not related to the generalization capability which is one of the major goals in the learning. It can be interpreted as a substitute for another learning which considers the generalization capability. Admissibility is a concept to discuss whether a learning can be a substitute for another learning. In this paper, we discuss the case where the learning which minimizes a training error is used as a substitute for the projection learning, which considers the generalization capability, in the presence of noise. Moreover, we give a method for choosing a training set which satisfies the admissibility.

  • A Character-Based Postprocessing System for Handwritten Japanese Address Recognition

    Keiji YAMANAKA  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    468-474

    Based on a previous work on handwritten Japanese kanji character recognition, a postprocessing system for handwritten Japanese address recognition is proposed. Basically, the recognition system is composed of CombNET-II, a general-purpose large-scale character recognizer and MMVA, a modified majority voting system. Beginning with a set of character candidates, produced by a character recognizer for each character that composes the input word and a lexicon, an interpretation to the input word is generated. MMVA is used in the postprocessing stage to select the interpretation that accumulates the highest score. In the case of more than one possible interpretation, the Conflict Analyzing System calls the character recognizer again to generate scores for each character that composes each interpretation to determine the final output word. The proposed word recognition system was tested with 2 sets of handwritten Japanese city names, and recognition rates higher than 99% were achieved, demonstrating the effectiveness of the method.

  • Derivation of the Iteration Algorithm for the Modified Pseudo-Inverse Model for Associative Memory from the Consideration of the Energy Function

    Yoshifumi OGAWA  Iku NEMOTO  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:2
      Page(s):
    503-507

    The pseudo-inverse model for the associative memory has an iterative algorithm converging to its weight matrix. The present letter shows that the same algorithm except for the lack of self couplings can be derived by simple consideration of the energy of the network state.

  • A Transformation Method of a CORDIC ARMA Lattice Filter for Signal Synthesis

    Shin'ichi SHIRAISHI  Miki HASEYAMA  Hideo KITAJIMA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    230-237

    This paper proposes a method to transform a CORDIC ARMA lattice filter, which is originally realized for signal analysis, into a signal synthesis lattice filter (CORDIC ARMA lattice synthesis filter). In order to perform such a transformation and then obtain the CORDIC ARMA lattice synthesis filter, we must implement the followings with CORDIC: (1) the structure of the altered lattice filter; and (2) an angle calculation module. However, we cannot achieve such an implementation as an extension of the CORDIC ARMA lattice filter algorithm. Therefore, this paper proposes CORDIC implementation schemes for both the structure and module, and then we realize the CORDIC ARMA lattice synthesis filter. By using CORDIC processors, the elementary sections of the CORDIC ARMA lattice synthesis filter are efficiently implemented without any multipliers. Since the obtained signal synthesis lattice filter consists of dedicated CORDIC processors, it keeps the advantage of the CORDIC ARMA lattice filter, that is a simple structure.

  • Photonic Packet Switching: An Overview

    Rodney S. TUCKER  Wen De ZHONG  

     
    INVITED PAPER-Packet and ATM Switching

      Vol:
    E82-C No:2
      Page(s):
    202-212

    The application of photonic technologies to packet switching offers the potential of very large switch capacity in the terabit per second range. The merging of packet switching with photonic technologies opens up the possibility of packet switching in transparent photonic media, in which packets remain in optical form without undergoing optoelectronic conversion. This paper reviews recent work on photonic packet switching. Different approaches to photonic packet switching and key design issues are discussed.

  • Spot-Size-Converter Integrated Semiconductor Optical Amplifiers for Optical Switching Systems

    Takemasa TAMANUKI  Shotaro KITAMURA  Hiroshi HATAKEYAMA  Tatsuya SASAKI  Masayuki YAMAGUCHI  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-C No:2
      Page(s):
    379-386

    Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.

  • Polymeric 116 Arrayed Waveguide Grating Multiplexer Using Fluorinated Poly(Arylene Ethers) at 1550 nm

    Joo-Heon AHN  Hyung-Jong LEE  Wol-Yon HWANG  Min-Cheol OH  Myung-Hyun LEE  Seon Gyu HAN  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic WDM Devices

      Vol:
    E82-C No:2
      Page(s):
    354-356

    A 116 arrayed waveguide grating multiplexer operating around 1550 nm has been realized using newly synthesized fluorinated poly(arylene ethers). The channel spacing is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 17-20 dB and the cross talk is less than -15 dB. The propagation loss of a rib waveguide is less than 0.5 dB/cm at 1550 nm.

  • All-Optical NRZ-to-Inverted-RZ Converter with Extinction Ratio Enhancement Using a Modified Terahertz Optical Asymmetric Demultiplexer

    Hyuek Jae LEE  Kwangjoon KIM  Jee Yon CHOI  Hae-Geun KIM  Chu Hwan YIM  

     
    LETTER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    335-337

    To enhance the extinction ratio (ER) of NRZ-to-inverted-RZ converter based on cross-gain compression of a semiconductor optical amplifier (SOA), a modified terahertz optical asymmetric demultiplexer (TOAD) is cascaded. ER is improved from 1.6-6.7 dB to 5.4-14.5 dB, depending on the intensity of input optical NRZ signal. The proposed NRZ-to-inverted-RZ converter enhances and regulates ER to a high value (14.5 dB) for very wide optical NRZ signal intensity range.

  • Acceleration Techniques for the Network Inversion Algorithm

    Hiroyuki TAKIZAWA  Taira NAKAJIMA  Masaaki NISHI  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    LETTER-Bio-Cybernetics and Neurocomputing

      Vol:
    E82-D No:2
      Page(s):
    508-511

    We apply two acceleration techniques for the backpropagation algorithm to an iterative gradient descent algorithm called the network inversion algorithm. Experimental results show that these techniques are also quite effective to decrease the number of iterations required for the detection of input vectors on the classification boundary of a multilayer perceptron.

  • Viewpoint-Based Similarity Discernment on SNAP

    Takashi YUKAWA  Sanda M. HARABAGIU  Dan I. MOLDOVAN  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:2
      Page(s):
    500-502

    This paper presents an algorithm for viewpoint-based similarity discernment of linguistic concepts on Semantic Network Array Processor (SNAP). The viewpoint-based similarity discernment plays a key role in retrieving similar propositions. This is useful for advanced knowledge processing areas such as analogical reasoning and case-based reasoning. The algorithm assumes that a knowledge base is constructed for SNAP, based on information acquired from the WordNet linguistic database. The algorithm identifies paths on the knowledge base between each given concept and a given viewpoint concept, then computes a similarity degree between the two concepts based on the number of nodes shared by the paths. A small scale knowledge base was constructed and an experiment was conducted on a SNAP simulator that demonstrated the feasibility of this algorithm. Because of SNAP's scalability, the algorithm is expected to work similarly on a large scale knowledge base.

  • All-Optical Code Division Multiplexing Switching Network Based on Self-Routing Principle

    Isamu SAEKI  Shouhei NISHI  Koso MURAKAMI  

     
    PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    187-193

    The tera-bit order capacity of ultrahigh-speed and wide-band networks will become necessary to provide highly advanced multimedia services. In conventional networks, electronic circuits limit the speed capability of the networks. Consequently, all-optical networks are essential to realize ultrahigh-speed and wide-band communications. In this paper, we propose the configuration of an all-optical code division multiplexing (CDM) switching network based on self-routing principles and the structure of a nonlinear all-optical switching device as one of the key components for the network. We show that the required performances of the optical devices used in the CDM switching fabric are lower than those used in the TDM and illustrate the basic transmission characteristics of the switching device utilizing FD-BPM. To evaluate the multiplexing performance, we demonstrate the maximum number of channels under an error-free condition and the BER characteristics when the Gold sequence is applied as one of the CDM code sets, and show that the network of the sub-tera-bit order capacity is realizable by adopting TDM, WDM and CDM technologies. We also illustrate the packet assembly method suitable for self-routing transmissions and one of network architectures where the proposed switching fabric can be exploited.

  • Optical Path Cross-Connect System Using Matrix Wavelength Division Multiplex Scheme

    Kazunari HARADA  Kenji SHIMIZU  Nobuhiro SUGANO  Teruhiko KUDOU  Takeshi OZEKI  

     
    PAPER-Circuit Switching and Cross-Connecting

      Vol:
    E82-B No:2
      Page(s):
    344-348

    Wavelength division multiplex (WDM) photonic networks are expected as the key for the global communication infrastructure. Recent increase of communication demands require large-scale highly-dense WDM systems, which results in severe requirements for optical cross-connect systems, such as cross-talk specification. In this paper, we propose a new optical path cross-connect system (OPXC) using matrix-WDM scheme, which makes it possible to reduce cross-talk requirements of WDM filters and to construct OPXC in modular structures. The matrix-WDM scheme is a concept of two-layered optical paths, which provides wavelength group managements in the fiber dispersion equalization and EDFA gain equalization.

13421-13440hit(16314hit)